
SAS® 9.4 Stored
Processes: Developer’s
Guide, Third Edition

SAS® Documentation
January 10, 2023

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS® 9.4 Stored Processes: Developer’s Guide, Third
Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 Stored Processes: Developer’s Guide, Third Edition

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

January 2023

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P9:stpug

Contents

What’s New in SAS 9.4 Stored Processes . v

Chapter 1 / Overview of SAS Stored Processes . 1
What Are SAS Stored Processes? . 1
Why Are SAS Stored Processes Important? . 1
Which Clients Can Use SAS Stored Processes? . 2
What Are SAS IOM Direct Interface Stored Processes? . 4

Chapter 2 / Writing a SAS Stored Process . 5
Overview of Writing a Stored Process . 6
Using Input Parameters . 8
Getting Data and Files into and Out of Stored Processes . 14
Setting Result Capabilities . 16
Using the %STPBEGIN and %STPEND Macros . 18
Using Output Parameters . 25
Using Reserved Macro Variables . 26
Using Sessions . 47

Chapter 3 / Stored Process Server Functions . 51
Using Stored Process Server Functions . 51
Dictionary . 51

Chapter 4 / Managing Stored Process Metadata . 59
Choosing or Defining a Server . 59
Using Source Code Repositories . 61
Registering the Stored Process Metadata . 62
Developing Stored Processes with Package Results . 64
Using Prompts . 70
Making Stored Processes Compatible with 9.2 and Upgrading

Stored Processes . 71

Chapter 5 / Debugging Stored Processes . 73
Examining the SAS Log . 73
Using SAS Options . 74

Chapter 6 / Composing Stored Process Reports . 75
Overview of Stored Process Reports . 75
Creating and Managing Stored Process Reports . 76

Chapter 7 / Building a Web Application with SAS Stored Processes . 79
Overview . 80
Configuring the SAS Stored Process Web Application . 83
Specifying Web Application Input . 93
Uploading Files . 97
Authentication in the SAS Stored Process Web Application 107
Using the SAS Stored Process Web Application Pages . 110

Using HTTP Headers . 120
Embedding Graphics . 125
Chaining Stored Processes . 129
Using Sessions in a Sample Web Application . 134
Error Handling . 144
Debugging in the SAS Stored Process Web Application . 145

Chapter 8 / STP Procedure . 149
Overview: STP Procedure . 149
Concepts: STP Procedure . 150
Syntax: STP Procedure . 153
Examples: STP Procedure . 178

Appendix 1 / Stored Process Software Requirements . 181
General Requirements . 181
Client-Specific Requirements . 181
Components . 182

Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes 185
Overview . 185
Compatibility Features . 186
Conversion Considerations . 187
Overview of Conversion Steps . 190
Example . 191
Executing Catalog Entries . 206

Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts 209
Entering Prompt Values in the SAS Stored Process Web Application 209
Macro Variables That Are Generated from Prompts . 216

iv Contents

What’s New in SAS 9.4 Stored
Processes

Overview
SAS 9.4 Stored Processes introduces new features for the STP procedure and the
SAS Stored Process Web Application, as well as general enhancements.

STP Procedure Enhancements
The following enhancements have been added to PROC STP:

n Beginning with SAS 9.4M3, you can specify file locations as a fileref of an
aggregate storage location and the name of a file or member, enclosed in
parentheses, that resides in that location. This is valid for the INPUTFILE, LOG,
and OUTPUTFILE statements.

n Beginning with SAS 9.4M3, if you specify a null value for the INPUTPARAM
statement, then any default value that was specified for the parameter in
metadata is ignored and the value is null. However, if the metadata specifies that
the parameter requires a non-blank value, then you will receive an error.

n Beginning with SAS 9.4M3, you can specify multiple lines of text for the value of
the input parameter in the INPUTPARAM statement.

n In SAS 9.4M2, the following two automatic macro variables have been added.
These macro variables are generated by PROC STP, and are used to
communicate status from the stored process.

_STPCC
specifies the maximum exit code from the stored process environment.

_STPRC
specifies the current return code from the stored process environment.

n Beginning with SAS 9.4M2, the INPUTPARAM statement for PROC STP
supports selection groups and an alternate way to specify a range value for an
input parameter.

v

n Stored processes can be executed on a remote Grid or CONNECT server. The
SERVER= option specifies whether a stored process executes locally or
remotely. Remote execution is the default, starting with SAS 9.4.

n The REMOTE argument on the INPUTDATA, INPUTFILE, OUTPUTDATA, and
OUTPUTFILE statements specifies that a data set or file exists on the remote
server.

n The MEMTYPE argument on the INPUTDATA and OUTPUTDATA statements
specifies whether the member type is a data set, data view, or catalog. Catalog
support is new for PROC STP in SAS 9.4.

n User formats can be specified, and you can use the FMTSEARCH system option
to search format catalogs.

For more information about PROC STP, see Chapter 8, “STP Procedure,” on page
149.

SAS Stored Process Web Application
Enhancements

The following enhancements have been added to the SAS Stored Process Web
Application:

n In SAS 9.4M3, the App.AllowGuest initialization parameter has been added. This
parameter causes a Guest option to be displayed on the SAS Logon Manager
sign-in screen. When the AllowGuest parameter is set to true, App.AllowGuest
must also be set to true, or GuestUsername and GuestPassword must be set.

n You can create a NotFound.jsp page to display when the stored process cannot
be located.

n The following initialization parameters have been added:

AllowBasicAuthentication enables the SAS Stored Process Web
Application to bypass the Logon Manager and to
handle user verification through the http://
yourserver.com:8080/SASStoredProcess/do1
URL.

InternalURL specifies a URL for the SAS Stored Process
Web Application to use to retrieve resource files.

RTL.SupportedLocales specifies a comma-delimited list of locales that
should be displayed right to left. For SAS 9.4,
this is supported only by the SAS Stored
Process Web Application prompt page.

For more information, see “Initialization Parameters”.

n Instructions for enabling logging and encoding characters have been added. For
more information, see “Debugging in the SAS Stored Process Web Application ”.

vi What’s New in SAS 9.4 Stored Processes

n Instead of using a JSP file to create a custom input form, you can use HTML
following the CARDS4 statement in a DATA step. For more information, see
“Passing Data through the DATA Step”.

General Enhancements
The following general enhancements have been added to SAS Stored Processes:

n In SAS 9.4M6, functionality has been added to address security vulnerabilities
with stored processes. This functionality removes semicolons from most input
parameters because semicolons in an input parameter can execute a code
injection. If you have existing code that uses semicolons in input parameters,
you can use the STP_UNSAFE_DISABLE environment parameter to disable this
functionality.

n In SAS 9.4M6, the following _SUPPRESS_MVARS reserved macro variable has
been added. This macro variable enables you to hide all macro variables and
their values from the SAS log.

n In SAS 9.4M3, the following reserved macro variables have been added:

_HTTP_TOKENAUTH enables token authentication to a SAS Content
Server when _RESULT is set to
PACKAGE_TO_WEBDAV.

_TIMEZONE sets the TIMEZONE SAS system option.

n You can use the SYSPROCESSMODE automatic macro variable to find out
which server type the stored process is using to execute. For more information
about using the automatic macro variable SYSPROCESSMODE, see
“SYSPROCESSMODE Automatic Macro Variable” in SAS Macro Language:
Reference.

n The following reserved macro variables have been added:

_FILE_DESCRIPTION specifies the description that is to be used for all
files that are added to a package.

_FMTSEARCH specifies which format catalogs need to be
appended to the FMTSEARCH option.

_REPORTID specifies the ID of the generation of a stored
process report.

_REQENCODING specifies the servlet input encoding.

_USERLOCALE contains the locale for the user that was set in the
user preferences (for web clients).

The following values have been added for existing reserved macro variables:

_ACTION=RECALL can be combined with the PROPERTIES value to
retain prompt values throughout a session.

_RESULT=PACKAGE specifies that a transient package is returned to the
client.

General Enhancements vii

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en

For more information, see “Using Reserved Macro Variables”.

viii What’s New in SAS 9.4 Stored Processes

1
Overview of SAS Stored
Processes

What Are SAS Stored Processes? . 1

Why Are SAS Stored Processes Important? . 1

Which Clients Can Use SAS Stored Processes? . 2

What Are SAS IOM Direct Interface Stored Processes? . 4

What Are SAS Stored Processes?
A stored process is a SAS program that is stored on a server and defined in
metadata, and which can be executed as requested by client applications. You can
use stored processes for web reporting, analytics, building web applications,
delivering packages to clients or to the middle tier, and publishing results to
channels or repositories. Stored processes can also access any SAS data source or
external file and create new data sets, files, or other data targets that are supported
by SAS.

Why Are SAS Stored Processes
Important?

The ability to store your SAS programs on the server provides an effective method
for change control management. For example, instead of embedding the SAS code
into client applications, you can centrally maintain and manage this code from the
server. This gives you the ability to change your SAS programs and at the same

1

time ensure that every client that invokes a stored process always gets the latest
version available.

The stored process concept becomes even more powerful when you consider that
these SAS programs can be invoked from multiple client contexts. For example, you
might deploy Java applets and Windows applications that invoke your stored
processes. If your strategy is to use a multi-tiered architecture, you can use
Enterprise JavaBeans (EJB) technology, for example, to invoke the same stored
processes from an application server.

Using stored processes also enhances security and application integrity because
the programs that access your sensitive data are contained on the server instead of
being widely distributed with the client applications.

Which Clients Can Use SAS Stored
Processes?

SAS Stored Processes can be used in many different client applications. The
following list gives a brief overview of each application so that you can determine
which client best meets your needs.

JMP
You can use JMP to run stored processes and view results. See Using JMP for
more information.

SAS Add-In for Microsoft Office
The SAS Add-In for Microsoft Office is a Component Object Model (COM) add-in
that extends Microsoft Office by enabling you to dynamically execute stored
processes and embed the results in Microsoft Word documents, Microsoft Excel
spreadsheets, and Microsoft PowerPoint presentations. Also, within Excel, you
can use the SAS add-in to access and view SAS data sources or any data
source that is available from your SAS server, and analyze SAS or Excel data by
using analytic tasks. For more information about using stored processes with the
SAS Add-In for Microsoft Office, see the SAS Add-In for Microsoft Office Online
Help, which is located within the product.

SAS BI Dashboard
You can use SAS BI Dashboard to execute stored processes and to include
stored processes or stored process results in a dashboard. When a dashboard
has an indicator that was configured with stored process indicator data, users
can see output from that stored process if it belongs to the displayed dashboard.
See SAS BI Dashboard: User's Guide for more information.

SAS BI Web Services
SAS BI Web Services provide a web service interface to SAS Stored Processes.
Starting with SAS 9.3, all stored processes are available individually for
execution using web services, without any action required from the user. For
more information about using stored processes with SAS BI Web Services, see
the SAS BI Web Services: Developer’s Guide.

SAS Data Integration Studio
SAS Data Integration Studio enables its administrators to publish jobs as stored
processes. SAS Data Integration Studio can generate code that converts a job

2 Chapter 1 / Overview of SAS Stored Processes

into a stored process, which is saved to a file and can be executed later by the
SAS Stored Process Server. Metadata about the stored process is saved in the
current metadata repository. For more information about using stored processes
with SAS Data Integration Studio, see the SAS Data Integration Studio product
Help.

SAS Enterprise Guide
SAS Enterprise Guide provides an integrated solution for authoring, editing, and
testing stored processes. You can create stored processes from existing or new
SAS code and create stored processes automatically from SAS Enterprise Guide
tasks. Metadata registration and source code management are handled from
one interface. SAS Enterprise Guide also has the capability to execute stored
processes, which enables you to modify and test your stored process without
leaving the SAS Enterprise Guide environment. For more information about
using stored processes with SAS Enterprise Guide, see the SAS Enterprise
Guide product Help.

SAS Information Delivery Portal
The SAS Information Delivery Portal provides integrated web access to SAS
reports, stored processes, information maps, and channels. If you have installed
the SAS Information Delivery Portal, you can make stored processes available to
be executed from the portal without the need for additional programming. The
SAS Information Delivery Portal includes the SAS Stored Process Web
Application. For more information about using stored processes with the SAS
Information Delivery Portal, see the SAS Intelligence Platform: Web Application
Administration Guide.

Note: Starting with SAS 9.4M8, SAS Information Delivery Portal and SAS BI
Portlets are not available from SAS. If you have an existing installation of SAS
Information Delivery Portal and SAS BI Portlets in your environment and plan to
upgrade or migrate to SAS 9.4M8 or later, SAS recommends that you first
unconfigure and uninstall SAS Information Delivery Portal and SAS BI Portlets. A
best practice is to unconfigure retired SAS products before you upgrade and to
uninstall them after you upgrade. For more information, see Unconfiguring and
Uninstalling Retired Products in SAS Guide to Software Updates and Product
Changes.

SAS Information Map Studio
Stored processes can be used to implement information map data sources.
Stored processes can use the full power of SAS procedures and the DATA step
to generate or update the data in an information map. For more information
about stored process information maps, see the SAS Information Map Studio
product Help.

SAS Stored Process Web Application
The SAS Stored Process Web Application is a Java web application that can
execute stored processes and return results to a web browser. The SAS Stored
Process Web Application is similar to the SAS/IntrNet Application Broker and
has the same general syntax and debugging options as the Application Broker.
For examples of this component, see “Using the SAS Stored Process Web
Application Pages” on page 110. The SAS Stored Process Web Application is
included with the SAS Web Infrastructure Platform, which is a component of SAS
Integration Technologies.

SAS Web Report Studio
You can use SAS Web Report Studio to execute stored processes and to include
stored processes or stored process results in a report. For more information
about using stored processes with SAS Web Report Studio, see the SAS Web

Which Clients Can Use SAS Stored Processes? 3

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=whatsdiff&docsetTarget=p0rnmms86wf7b0n1682c6c54kl7x.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=whatsdiff&docsetTarget=p0rnmms86wf7b0n1682c6c54kl7x.htm

Report Studio: User’s Guide, the SAS Intelligence Platform: Web Application
Administration Guide, and the SAS Web Report Studio product Help.

Stored Process Java API
The Stored Process Java API is a Java application programming interface (API)
that enables you to execute stored processes from a Java program. This API is
commonly used in JSP pages, but can also be used from servlets, custom
tagsets and other Java applications. The Stored Process Java API is part of SAS
Foundation Services; you must deploy SAS Foundation Services in order to use
the Stored Process Java API. If you want to register new stored processes and
modify metadata for existing stored processes programmatically, use the
com.sas.services.storedprocess.metadata API. See the API Javadoc at http://
support.sas.com/rnd/javadoc/94 for more details.

Stored Process Windows API
The Stored Process Windows API is a Microsoft .NET application programming
interface (API) that enables you to execute stored processes from within
the .NET framework (using C# or VB.NET, for example). This API is used by
both SAS Enterprise Guide and SAS Add-In for Microsoft Office, and can be
used to write ASP.NET or Windows applications. The Stored Process Windows
API is part of SAS Integration Technologies; you must deploy SAS Integration
Technologies in order to use the Stored Process Windows API.

What Are SAS IOM Direct Interface
Stored Processes?

There are two different types of stored processes. A limited form of stored
processes, IOM Direct Interface Stored Processes, was introduced in SAS 8. This
type of stored process operates on a SAS Workspace Server and produces
packages only. IOM Direct Interface Stored Processes are still fully supported.
However, the focus of this documentation is on SAS Stored Processes. SAS Stored
Processes are new with SAS® 9, and they can be used with either a SAS
Workspace Server or a SAS Stored Process Server.

4 Chapter 1 / Overview of SAS Stored Processes

http://support.sas.com/rnd/javadoc/94
http://support.sas.com/rnd/javadoc/94

2
Writing a SAS Stored Process

Overview of Writing a Stored Process . 6

Using Input Parameters . 8
Overview of Input Parameters . 8
Standard Header for Parameters . 9
Defining Input Parameters . 10
Unsafe Character Quoting . 11
Input Parameters with Multiple Values . 12
Hiding Passwords and Other Sensitive Data . 13

Getting Data and Files into and Out of Stored Processes . 14
Input Files . 14
Input Data . 14
Output Files . 15
Output Data . 16

Setting Result Capabilities . 16

Using the %STPBEGIN and %STPEND Macros . 18
Overview of %STPBEGIN and %STPEND . 18
ODS Options . 19
Overriding Input Parameters . 19
Results . 20
Errors . 21
Advanced Package Publishing . 21

Using Output Parameters . 25

Using Reserved Macro Variables . 26

Using Sessions . 47
Overview of Sessions . 47
Creating a Session . 47
Using the Session . 48
Deleting the Session . 49
Limitations . 49

5

Overview of Writing a Stored Process
A stored process is a SAS program that is hosted on a server and described by
metadata. Stored processes can be written by anyone who is familiar with the SAS
programming language or with the aid of a SAS code generator such as SAS
Enterprise Guide. The basic steps for creating a stored process are as follows:

1 Write the stored process.

2 Choose or define a server. For more information, see “Choosing or Defining a
Server” on page 59.

3 Register the stored process metadata. For more information, see “Registering
the Stored Process Metadata” on page 62.

Almost any SAS program can be a stored process. A stored process can be written
using the SAS Program Editor, SAS Enterprise Guide, or any text editor. The
following program is a typical stored process:

 %STPBEGIN;
 title 'Age analysis by sex';
 footnote;
 proc sort data=sashelp.class out=class; by sex age; run;
 proc gchart data=class;
 vbar3d age / group=sex
 discrete
 nozero
 shape=cylinder
 patternid=group;
 run; quit;
 title;
 proc print data=class;
 by sex age;
 id sex age;
 var name height weight;
 run;
 %STPEND;

The %STPBEGIN and %STPEND macros initialize the Output Delivery System
(ODS) and deliver the output to the client. This stored process is capable of
generating multiple output formats, including HTML, XML, PDF, CSV, and custom
tagsets and then delivering the output through packages or streaming output. For
more information, see “Setting Result Capabilities” on page 16.

Note: Because the %STPBEGIN and %STPEND macros initialize the Output
Delivery System (ODS), you should use them only if your stored process creates
ODS output. They are not necessary if the stored process is creating only a table
and does not create a report. Another case where they should not be used is when
your stored process writes directly to the _WEBOUT fileref, either using the DATA
step or some other method. Writing to _WEBOUT is a common technique used in
SAS/IntrNet programs.

6 Chapter 2 / Writing a SAS Stored Process

This sample code generates the following bar chart and table:

Figure 2.1 Stored Process Results: Bar Chart

Overview of Writing a Stored Process 7

Figure 2.2 Stored Process Results: Table

Using Input Parameters

Overview of Input Parameters
Most stored processes require information from the client to perform their intended
function. This information can be in the form of presentation options for a report,

8 Chapter 2 / Writing a SAS Stored Process

selection criteria for data to be analyzed, names of data tables to be used or
created, or an unlimited number of other possibilities. Input parameters are the most
common way to deliver information from a client to a stored process.

Input parameters are defined as name/value pairs. They appear in a stored process
program as global macro variables. For example, if you have a stored process that
analyzes monthly sales data, you might accept MONTH and YEAR as input
parameters. The stored process program might be similar to the following code:

 %stpbegin;

 title "Product Sales for &MONTH, &YEAR";
 proc print data=sales;
 where Month eq "&MONTH" and Year eq &YEAR;
 var productid product sales salesgoal;
 run;

 %stpend;

Because input parameters are simply macro variables, they can be accessed
through normal macro substitution syntax (¶m-name) or through any other SAS
functions that access macro variables (SYMGET, SYMGETC, or SYMGETN). Parameters
follow the same rules as SAS macro variables. Names must start with an alphabetic
character or underscore and can contain only alphanumeric characters or
underscores. The name can be no more than 32 characters long and is not case
sensitive. Values can contain any character except a null character and can be up to
65,534 characters in length. For stored processes that are compatible with 9.2 and
that run on the workspace server, values are limited to approximately 5950 bytes in
length and cannot contain nonprintable characters (including line feeds or carriage
returns).

Each stored process client interface provides one or more methods to set input
parameters. The Stored Process Java API provides a direct programming interface
to set name/value pairs. The SAS Stored Process Web Application allows name/
value pairs to be specified directly on a URL or indirectly through posting HTML
form data. The SAS Add-In for Microsoft Office provides a property sheet interface
to specify parameters.

There are many reserved parameters that are created by the server or the stored
process client interface. For a list of these variables, see “Using Reserved Macro
Variables” on page 26.

Standard Header for Parameters
For stored processes that are compatible with 9.2, parameters are not initialized in
the same way for the stored process server and the workspace server. The stored
process server sets parameter values before the stored process begins to execute.
This means the first line of code in the stored process can access any input
parameter macro variable. The workspace server does not set input parameters into
macro variables until it reaches a *ProcessBody; comment line in the stored
process:

*ProcessBody;

A stored process that does not contain this line never receives input parameters
when executed on a workspace server. Also, without this comment, the stored
process is not able to use reserved macro variables, such as _METAUSER.

Using Input Parameters 9

It is recommended that you begin all stored processes (regardless of the server
types) with %GLOBAL declarations for all of your input parameters followed by the
*ProcessBody; comment:

 /**
 * Standard header comment documenting your
 * stored process and input parameters.
 * ** */
 %global parmone parmtwo parmthree;
 %global parmfour;
 *ProcessBody;

 ... remainder of the stored process ...

The %GLOBAL declarations create an empty macro variable for each possible input
parameter and enable you to reference the macro variable in the stored process
even if it was not set by the stored process client. If you do not declare input
parameters in a %GLOBAL statement, then any references to an unset input
parameter will result in WARNING messages in the SAS log.

Note: Starting with 9.3, you do not need to include the *ProcessBody; comment.

Defining Input Parameters
Most stored process client interfaces allow a client to pass any input parameter.
Input parameters are defined in SAS Management Console as prompts. Several
types of macro variables are generated from prompts, depending on the type of
prompt and what other information is included in the prompt definition. There is no
requirement to define parameters before executing the stored process, but there are
many advantages to describing parameters in stored process metadata. Here are
some of the advantages:

n Parameter definitions can specify labels and descriptive text. This information
can be used by client interfaces to present a more attractive and informative user
interface. Other presentation options include grouping parameters.

n Default values can be specified. However, if the parameter is not required and
the default value is cleared in the client, then the parameter value is empty when
passed to the stored process.

Note: The STP procedure uses the default value if a value is not specified.

n Default values can be flagged as read-only to allow a fixed parameter value to
always be passed in a stored process. This can be useful when using an existing
program that accepts many input parameters. You can register a new, simpler
stored process that has some fixed value parameters and fewer client-specified
parameters. You can also register multiple stored processes for a single
program. Each stored process definition can pass in unique fixed parameter
values to the executing program to force a particular operation or otherwise
affect the execution of the stored process.

n Parameters can be flagged as required. A stored process does not run unless
the client specifies values for these parameters.

10 Chapter 2 / Writing a SAS Stored Process

n Parameters can be limited to a specific type such as text or date. Defining a
parameter type causes certain client user interfaces (such as SAS Add-In for
Microsoft Office) to present more appropriate input controls. All interfaces reject
stored process requests with input parameters that do not match the specified
type.

n Parameter values can be limited by specifying enumerated lists or ranges of
valid values for a parameter.

n Dates and times, as well as date ranges and time ranges, can be specified as
relative values.

n Input parameters can be shared between stored processes. Other applications
or software features that support prompts can also take advantage of these
prompts.

n Input parameters can be populated dynamically from a data source.

n Dependencies can be specified between input parameters.

n Selection groups can be used.

Parameter metadata for a stored process can be added or modified using SAS
Management Console. To define an input parameter for a stored process, click New
Prompt in the New Stored Process wizard or on the Parameters tab in the Stored
Process Properties dialog box. For an example of how to add an input parameter to
a stored process definition, see “Adding a Parameter to the Stored Process
Definition” on page 203.

For information about using prompt features, see “Using Prompts” on page 70. For
more information about how to specify values for prompt, and macro variables that
are generated by prompts, see Appendix 3, “Formatting Prompt Values and
Generating Macro Variables from Prompts,” on page 209. For more information
about prompt types and defining prompts, see the product Help.

Unsafe Character Quoting
Input parameter values are specified by the stored process client at run time. The
author of a stored process has little control over the values a client can specify.
Setting the values directly into SAS macro variables enables clients to insert
executable macro code into a stored process and can lead to unexpected behavior
or unacceptable security risks. For example, if an input parameter named COMP
was set to Jones&Comp. and passed directly into the macro variable, then any
references to &COMP in the stored process program would lead to an invalid
recursive macro reference. To avoid this problem, stored process parameters are
masked with SAS macro quoting functions before being set into macro variables. In
the Jones&Comp example, the COMP parameter has the following setting:

 %let COMP=%nrstr(JonesComp.);

The stored process can then freely use &COMP without special handling for unusual
input values. Unsafe characters that are masked for input parameters are the
ampersand (&), apostrophe ('), percent sign (%), quotation marks ("), and semicolon
(;).

Using Input Parameters 11

Note: If you have existing code that relies on input parameters that contain
semicolons or other unsafe characters (that is, %,&,",'), this code should be
changed for security purposes.

There might be special cases where you want to unmask some or all of the unsafe
characters in an input parameter. The STPSRV_UNQUOTE2 function unmasks only
matched apostrophe (') or quotation mark (") characters. For more information, see
“STPSRV_UNQUOTE2 Function” on page 57. This can be useful for passing in
parameters that are used as SAS options. The %UNQUOTE macro function
unquotes all characters in an input parameter, but you should use this function only
in very limited circumstances. You should carefully analyze the potential risk from
unexpected client behavior before unquoting input parameters. Remember that
stored processes can be executed from multiple clients. Some client interfaces
perform little or no checking of input parameter values before they are passed in to
the stored process.

Note: An input parameter to a stored process that is compatible with 9.2 and that is
executing on a workspace server cannot contain both apostrophe (') and quotation
mark (") characters. Attempting to set such an input parameter results in an error.

In SAS 9.4M6, functionality has been added to address security vulnerabilities with
stored processes. This functionality removes semicolons from most input
parameters because semicolons in an input parameter can execute a code injection.
If you have existing code that uses semicolons in input parameters, you can use the
STP_UNSAFE_DISABLE environment variable to disable this functionality. Using
this environment variable would enable you to continue using semicolons in input
parameters. To set the environment variable, add the following line to the SAS
configuration file that is used to start the server:

-set STP_UNSAFE_DISABLE true

In most cases, this means modifying the sasv9_usermods.cfg file for the logical
server (that is, SASApp) that contains the stored process server or workspace
server that is used to execute the stored processes.

Input Parameters with Multiple Values
Parameters with multiple values (or alternatively, multiple input parameters with the
same name) can be useful in some stored processes. For example, an HTML input
form that is used to drive a stored process might contain a group of four check
boxes, each named CBOX. The value associated with each box is optOne, optTwo,
optThree, and optFour. The HTML for these check boxes might be

<input type="CHECKBOX" name="CBOX" value="optOne">
<input type="CHECKBOX" name="CBOX" value="optTwo">
<input type="CHECKBOX" name="CBOX" value="optThree">
<input type="CHECKBOX" name="CBOX" value="optFour">

If you select all four boxes and submit the form to the SAS Stored Process Web
Application, then the query string looks like this:

&CBOX=optOne&CBOX=optTwo&CBOX=optThree&CBOX=optFour

Macro variables cannot hold more than one value. The two types of servers that
execute stored processes handle this problem in different ways.

12 Chapter 2 / Writing a SAS Stored Process

The stored process server uses a macro variable naming convention to pass
multiple values to the stored process. A numeric suffix is added to the parameter
name to distinguish between values. The number of values is set in <param-name>
0, the first value is set in <param-name>1, and so on. In the previous example, the
following macro variables are set as shown in the following table:

Table 2.1 Automatically Generated Variables

Name/Value Pair Description

CBOX = optOne Specifies the first value.

CBOX0 = 4 Specifies the number of values.

CBOX1 = optOne Specifies the first value.

CBOX2 = optTwo Specifies the second value.

CBOX3 = optThree Specifies the third value.

CBOX4 = optFour Specifies the fourth value.

Note that the original parameter macro variable (CBOX) is always set to the first
parameter value.

Any client application can generate multiple value parameters. The typical uses for
multiple values are check box groups in HTML input forms and selection lists that
allow multiple selection.

If the parameter name is the same as one of the generated variables, then the
following error is returned:

Multiple definitions of a prompt name are not allowed. Certain prompt types
expand to multiple prompt names.

Hiding Passwords and Other Sensitive Data
If you are creating a prompt for a password and want the text to be masked as the
user is typing, use a text type prompt, and then select Masked single line (for
password entry) as the text type. For more information, see the prompt help in
SAS Management Console.

Even if you decide not to use a masked prompt, the SAS log exposes programs and
input parameters, which could pose a security issue. There are some actions that
you can take to hide passwords and other sensitive data from the SAS log.

n Hide password values from the SAS log by using the _PASSWORD suffix
anywhere in the input parameter name (for example, ABC_PASSWORD,
_PASSWORDABC).

n Disable the SAS log by using the DebugMask web application initialization
parameter. For more information, see “Debugging in the SAS Stored Process
Web Application ” on page 145.

Using Input Parameters 13

n Hide specific request variable values from the SAS log by using the prefix
NOLOG with macro variables. The _NOLOG_ prefix enables you to create
special macro variables that can be sent to the stored process server without
publishing the macro variable values in the SAS log. The special macro variables
must start with the prefix _NOLOG_. The prefix is not case sensitive. Here is an
example of an input parameter with the _NOLOG_ prefix:

http://yourserver/SASStoredProcess/do?
_program=/WebApps/Sales/Employee+Salary&_nolog_salary=secretpw

If _NOLOG_SALARY is displayed in the SAS logs, the log shows the following:

_NOLOG_SALARY=XXXXXXXX;

n Hide all macro variables and their values from the SAS log by using the
_SUPPRESS_MVARS input parameter and setting the value to y or yes. Here is
an example that uses _SUPPRESS_MVARS:

http://yourserver/SASStoredProcess/do?
_program=/WebApps/Sales/Employee+Salary&_suppress_mvars=y

Note: The _NOLOG_ prefix, _PASSWORD suffix, and _SUPPRESS_MVARS input
parameter are effective only if your stored process is running on a stored process
server.

Getting Data and Files into and Out of
Stored Processes

Input Files
A stored process can accept input in the form of an input file. An input file is a SAS
fileref that is set up before the stored process begins execution. The fileref can point
to a local file on the server, a stream fed by the client, a temporary file written by the
client, or any other valid fileref that is set up by a stored process client.

Input files are identified by a unique fileref name and are defined in the stored
process metadata. The metadata can provide descriptive information or hints to
guide clients in the use of input files. Input files can be optional or required. Input
files are not assigned if the client does simply corresponding input.

Input Data
SAS programs frequently process input data sets. An input data set is defined by a
macro variable that contains the data set name. Any setup required to access the
data set (typically a libref assignment) is handled by the stored process framework.

14 Chapter 2 / Writing a SAS Stored Process

The following code is an example of a stored process with an input data set named
SALESDATA:

%stpbegin;

title "Sales for &MONTH, &YEAR";
proc print data=&SALESDATA
 where Month eq "&MONTH" and Year eq &YEAR
 var productid product sales salesgoal;
 run;

%stpend;

Different stored process client APIs provide different mechanisms for supplying
input data sets to a stored process, including:

Server data sets
specifies that the macro variable is set to the two-level data set name and, if
necessary, the required libref is assigned.

Client data sets
specifies that the client data set is copied to the WORK library on the server
system and the macro variable is set to the temporary data set name.

XML data
specifies an XML file or data stream as input data to the stored process. The
XML data is passed to the stored process via a temporary file and an XML
engine libref is assigned to the temporary file. The client can specify an XML
map to describe the format of the XML.

Client API access
specifies direct data access APIs that are appropriate for the technology (for
example, a JDBC connection for a Java API.)

Output Files
A stored process can create output in the form of an output file. An output file is a
SAS fileref that is set up before the stored process begins execution. The fileref can
point to a local file to be created on the server, a stream consumed by the client, a
temporary file that is read by the client after execution is complete, or any other valid
fileref that is set up by a stored process client.

Output files are identified by a unique fileref name and are defined in the stored
process metadata. The metadata can provide descriptive information or hints to
guide clients in the use of output files. Output files can be optional or required.
Optional output files are not assigned if the client does not request the output.

The _WEBOUT fileref is frequently used for streaming output from a stored process.
The client API can assign the _WEBOUT fileref to a server local file, a temporary
file, or any other valid fileref. In the streaming output use case, _WEBOUT is
assigned to a stream using the CACHE access method. Then ODS is configured to
write to _WEBOUT, and a handle to the _WEBOUT stream is returned to the client
web application. The client web application can read output from the stream as it is
written by the stored process.

Getting Data and Files into and Out of Stored Processes 15

Output Data
Stored processes support the generation of output data sets. An output data set is
defined by a macro variable that contains the data set name. Any setup required to
access the data set (typically a libref assignment) is handled by the stored process
framework.

The following code is an example of a stored process that generates an output data
set named SCORING:

%stpbegin;

data &SCORING;
 set MYLIB.RAWDATA;
 score = /* insert scoring algorithm based on input parameters here */;
 run;

%stpend;

Different stored process client APIs provide different mechanisms for accessing
output data sets, including:

Server data sets
specifies that the macro variable is set to the two-level data set name and, if
necessary, the required libref is assigned.

Client data sets
specifies that the macro variable is set to a temporary data set name in the
WORK library on the server system. After execution is complete, the data set is
copied to the client system.

XML data
assigns a temporary fileref and a corresponding XML engine libref. The macro
variable is set to a table in the XML libref. After execution is complete, the
resulting XML file is copied to the client system.

Client API access
specifies direct data access APIs that are appropriate for the technology (for
example, a JDBC connection for a Java API.)

Setting Result Capabilities
A stored process is a SAS program that can produce any type of output that a valid
SAS program can produce. Output could include data sets, external files, email
messages, SAS catalogs, packages, and many other objects. In some cases, the
output (or a result) is delivered to the client application that is executing the stored
process. In other cases, the output is generated only on the server.

When you register the stored process, you can specify what type of output the
stored process can produce. You can specify Stream, Package, both output types, or
neither output type.

16 Chapter 2 / Writing a SAS Stored Process

When you run the stored process, the client application chooses the type of output
that it prefers. For example, when SAS Web Report Studio runs a stored process,
package output is produced. There are four types of client output:

n The simplest type of output, or result type, is none. The client receives no output
from the stored process. The stored process is still able to create or update data
sets, external files, or other objects, but this output remains on the server. This
result type is indicated when the input parameter _RESULT is set to STATUS
because only the program status is returned to the client.

n Streaming output delivers a data stream, such as an HTML page or XML
document, to the client. This result type is indicated when _RESULT is set to
STREAM. The data stream can be textual or binary data and is visible to the stored
process program as the _WEBOUT fileref. Any data that is written to the
_WEBOUT fileref is streamed back to the client application.

n Package output can be either transient, meaning that the output is returned only
to the client and exists only in the current session, or permanent, meaning that
the package is stored or published somewhere and can be accessed even after
the session ends.

o Transient package output returns a temporary package to the client. The
package can contain multiple entries, including SAS data sets, HTML files,
image files, or any other text or binary files. The package exists only as long
as the client is connected to the server. This result type is a convenient way
to deliver multiple output objects (such as an HTML page with associated GIF
or PNG images) to a client application. Transient package output is indicated
when _RESULT is set to PACKAGE_TO_ARCHIVE and the input parameter
_ARCHIVE_PATH is set to TEMPFILE.

o Permanent package output creates a package in a permanent location on a
WebDAV server or in the server file system. The package is immediately
accessible to the stored process client, but is also permanently accessible to
any client with access to WebDAV or the server file system. This result type
is a convenient way to publish output for permanent access. Output to
WebDAV is indicated when _RESULT is set to PACKAGE_TO_WEBDAV. The
input parameter _COLLECTION_URL contains the target location. The input
parameters _HTTP_USER and _HTTP_PASSWORD might be set if the
WebDAV server is secured and credentials are available. The
_HTTP_PROXY_URL parameter is set if an HTTP proxy server is required to
access the WebDAV server. Output to the server file system is indicated
when _RESULT is set to PACKAGE_TO_ARCHIVE. The input parameters
_ARCHIVE_PATH and _ARCHIVE_NAME contain the target repository and
filename, respectively.

Permanent package output can also be published to a channel, an email
recipient, or to SharePoint. For more information about the parameters that
are used for publishing packages, see “Advanced Package Publishing” on
page 21.

Note: Although the result type is chosen when you define a stored process, the
result type can be changed by the client application through calls to the Stored
Process Service API. Where possible, it is recommended that you write stored
processes to support any appropriate client result type. This enables a client
application to select the result type most appropriate for that application. The
program can determine the desired client result type by examining the _RESULT
input parameter. The %STPBEGIN and %STPEND macros include support for any
of the four result types. For more information, see “Using the %STPBEGIN and
%STPEND Macros” on page 18. The following stored process is capable of

Setting Result Capabilities 17

generating streaming, transient package, or permanent package output. (It can also
be run with _RESULT set to STATUS, but this would produce no useful result.)

 %stpbegin;
 proc print data=SASHELP.CLASS noobs;
 var name age height;
 run;
 %stpend;

The input parameters that were mentioned previously are set by the stored process
client APIs and are reserved parameters. They cannot be overridden by passing in
new values through the normal parameter interface. Special API methods are
provided to set the result type and associated parameters for a stored process. For
more information about specific input parameters, see “Using Reserved Macro
Variables” on page 26. For more information about developing stored processes
that product package results, see “Developing Stored Processes with Package
Results ” on page 64.

Using the %STPBEGIN and %STPEND
Macros

Overview of %STPBEGIN and %STPEND
The %STPBEGIN and %STPEND macros provide standardized functionality for
generating and delivering output from a stored process. This enables you to write
stored processes that generate content in a variety of formats and styles with
minimal programming effort. Here is a typical stored process that uses these
macros:

 /* ***
 * Header comment documenting your
 * stored process and input parameters.
 * ** */
 %global input parameters;

 ... any pre-processing of input parameters ...

 %stpbegin;

 ... stored process body ...

 %stpend;

Note: You must include a semicolon at the end of the %STPBEGIN and %STPEND
macro calls. The %STPBEGIN macro initializes the Output Delivery System (ODS)
to generate output from the stored process. The %STPEND macro terminates ODS
processing and completes delivery of the output to the client or other destinations.

18 Chapter 2 / Writing a SAS Stored Process

The macros must be used as a matched pair for proper operation. Streaming output
and package output are supported. These macros rely on many reserved macro
variables to control their actions. For a more detailed description of each macro
variable mentioned in the following sections, see “Using Reserved Macro Variables”
on page 26. Because the %STPBEGIN and %STPEND macros initialize the
Output Delivery System (ODS), you should use them only if your stored process
creates ODS output. For example, the macros are not necessary if the stored
process is creating only a table. If you do use the macros, then you should set
_ODSDEST to NONE to disable ODS initialization. In these cases, your stored
process must explicitly create any output.

ODS Options
ODS options are specified by various global macro variables. These variables are
normally set by input parameters, but can be modified by the stored process. The
following variables affect ODS output:

n _ENCODING

n _GOPT_DEVICE

n _GOPT_HSIZE

n _GOPT_VSIZE

n _GOPT_XPIXELS

n _GOPT_YPIXELS

n _GOPTIONS

n _ODSDEST

n _ODSOPTIONS

n _ODSSTYLE

n _ODSSTYLESHEET

The _ODSDEST variable is important because changing this variable enables your
stored process to generate HTML, PDF, PostScript, or a variety of other formats,
including user-written tagset destinations. Many variables enable you to override
ODS options. You must remember to verify whether any options that are specified
by the stored process or its clients are compatible with the output destinations that
you plan to support.

Some ODS options (for example, BASE) are set based on the result options. For
more information, see “Results” on page 20. These options are generally
transparent to the stored process author, but they can make it difficult to modify
some ODS options in your stored process.

Overriding Input Parameters
Macro variables that are recognized by the %STPBEGIN macro can be set or
modified by the stored process. This is usually done to deny or limit client choices

Using the %STPBEGIN and %STPEND Macros 19

for that variable. For example, a stored process that requires the use of a particular
style might begin with the following statements:

 %global _ODSSTYLE;

 %let _ODSSTYLE=MyStyle;

 %stpbegin;

Any client-specified value for the _ODSSTYLE variable is ignored and the MyStyle
style is always used. A more elaborate implementation might validate an input
parameter against a list of supported values and log an error or choose a default
value if the client input is not supported.

A stored process can modify the macro variables that are used by the %STPBEGIN
macro at any time until %STPBEGIN is called. Modifying these reserved macro
variables after %STPBEGIN has been called is not recommended.

Results
The %STPBEGIN and %STPEND macros implement several options for delivering
results. For an introduction to the standard options for stored process results, see
“Setting Result Capabilities” on page 16. In most cases, a stored process that uses
these macros can support all the standard result types with no special coding. The
_RESULT variable defines the result type. The following values are supported:

STATUS
returns only a completion status. An ODS destination is not opened, but the ODS
LISTING destination is closed.

STREAM
returns the body or file output from ODS as a stream. This is the default result
type if _RESULT is not set.

There are several values for _RESULT that generate packages. Packages can be
delivered directly to the client and published to a more permanent location on the
server file system, a WebDAV server, or other destinations. Package creation and
delivery are controlled by many reserved macro variables. Here are the variables
that are valid for all package destinations:

n _ABSTRACT

n _DESCRIPTION

n _EXPIRATION_DATETIME

n _FILE_DESCRIPTION

n _NAMESPACES

n _NAMEVALUE

Here are additional variables that are recognized for specific _RESULT settings:

PACKAGE_TO_ARCHIVE
creates an archive package on the server file system that contains the generated
output. The _ARCHIVE_PATH and _ARCHIVE_NAME variables specify where
the package is created. In addition, _ARCHIVE_FULLPATH is set by %STPEND
to hold the full pathname of the created archive package.

20 Chapter 2 / Writing a SAS Stored Process

PACKAGE_TO_REQUESTER
returns a package to the stored process client. It can also simultaneously create
an archive package on the server file system if _ARCHIVE_PATH and
_ARCHIVE_NAME are set. This option is valid only on the workspace server,
and only for stored processes that are compatible with 9.2.

PACKAGE_TO_WEBDAV
creates a package as a collection on a WebDAV-compliant server. The location
of the package is defined by _COLLECTION_URL or _PARENT_URL. Other
relevant variables include _HTTP_PASSWORD, _HTTP_PROXY_URL,
_HTTP_TOKENAUTH, _HTTP_USER, and _IF_EXISTS.

The %STPBEGIN macro configures ODS to create output files in a temporary
working directory. The %STPEND macro then creates the package from all of the
files in this temporary directory. The temporary directory is defined by the
_STPWORK variable. This variable should not be changed by the stored process,
but new entries can be added to the output package by creating files in this
directory. For example, the XML LIBNAME engine might be used to create one or
more XML files that would be included in the package along with any output that
was created by ODS. The temporary directory and any files that are contained in it
are automatically deleted when the stored process completes. No cleanup is
required in the stored process program.

Note: If the environment variable STPWORK is not set when the server is started,
then STPBEGIN determines a temporary directory based on the operating system,
and places that value in the _STPWORK reserved macro variable. If the
environment variable STPWORK is set when the server is started, then STPBEGIN
uses the directory specified as a starting point to create the temporary directory. For
example, the STPWORK environment variable is set to /usrs/. STPBEGIN creates a
temporary subdirectory under /usrs/ and places the full path to the temporary
directory in the _STPWORK reserved macro variable.

Errors
Errors in the %STPBEGIN and %STPEND macros are reported in the _STPERROR
macro variable. A value of 0 indicates that the macro completed successfully. A
nonzero value indicates that an error occurred.

Because these macros enable clients or stored processes to submit SAS language
options (for example, the _ODSOPTIONS variable), it is possible for the macros to
fail in unusual ways. Invalid input parameters can cause the stored process to go
into syntaxcheck mode (when the SAS OBS option is set to 0) or to terminate
immediately.

Advanced Package Publishing
The %STPBEGIN and %STPEND macros support some package publishing
options that are not recognized by the stored process metadata framework. These
options are generally accessed by registering a stored process with no output type.

Using the %STPBEGIN and %STPEND Macros 21

This causes the stored process to be executed with _RESULT set to STATUS. The
stored process can then set _RESULT to one of the following values:

PACKAGE_TO_ARCHIVE
provides several new options when used in this way. Archive packages can be
created on HTTP servers that support updates and FTP servers. Variables that
control this option include the following:

n _ARCHIVE_NAME

n _ARCHIVE_PATH

n _FTP_PASSWORD

n _FTP_USER

n _GENERATED_NAME

n _HTTP_PASSWORD

n _HTTP_PROXY_URL

n _HTTP_USER

PACKAGE_TO_EMAIL
creates a package and mails it to one or more email addresses. An actual
archive package can be mailed, or the package can be created in a public
location and a reference URL can be mailed. Variables that control this option
include the following:

n _ADDRESSLIST_DATASET_LIBNAME

n _ADDRESSLIST_DATASET_MEMNAME

n _ADDRESSLIST_VARIABLENAME

n _APPLIED_TEXT_VIEWER_NAME

n _APPLIED_VIEWER_NAME

n _ARCHIVE_NAME

n _ARCHIVE_PATH

n _COLLECTION_URL

n _DATASET_OPTIONS

n _EMAIL_ADDRESS

n _FTP_PASSWORD

n _FTP_USER

n _FROM

n _HTTP_PASSWORD

n _HTTP_PROXY_URL

n _HTTP_USER

n _IF_EXISTS

n _PARENT_URL

n _PROCESS_VIEWER

n _REPLYTO

n _SENDER

22 Chapter 2 / Writing a SAS Stored Process

n _SUBJECT

n _TARGET_VIEW_MIMETYPE

n _TARGET_VIEW_NAME

n _TEXT_VIEWER_NAME

n _VIEWER_NAME

PACKAGE_TO_QUEUE
creates a package and sends it to one or more message queues. An actual
archive package can be sent, or the package can be created in a public location
and a reference URL can be sent. Variables that control this option include the
following:

n _ARCHIVE_NAME

n _ARCHIVE_PATH

n _CORRELATIONID

n _FTP_PASSWORD

n _FTP_USER

n _HTTP_PASSWORD

n _HTTP_PROXY_URL

n _HTTP_USER

n _MESSAGE_QUEUE

PACKAGE_TO_SHAREPOINT
creates a package and sends it to a Microsoft SharePoint server. Variables that
control this option include the following:

n _ARCHIVE_NAME

n _ARCHIVE_PATH

n _APPLIED_VIEWER_NAME

n _COLLECTION_FOLDER

n _COLLECTION_URL

n _DEBUG_FILE

n _GENERATED_NAME

n _HTTP_PASSWORD

n _HTTP_USER

n _IF_EXISTS

n _INITIALIZE_SITE

n _LIST_NAME

n _PARENT_FOLDER

n _PARENT_URL

n _SITE_URL

n _TARGET_VIEW_MIMETYPE

n _TARGET_VIEW_NAME

n _VIEWER_NAME

Using the %STPBEGIN and %STPEND Macros 23

PACKAGE_TO_SUBSCRIBERS
creates a package and sends it to a subscriber channel. An actual archive
package can be sent, or the package can be created in a public location and a
reference URL can be sent. Variables that control this option include the
following:

n _APPLIED_TEXT_VIEWER_NAME

n _APPLIED_VIEWER_NAME

n _ARCHIVE_NAME

n _ARCHIVE_PATH

n _CHANNEL

n _CHANNEL_STORE

n _COLLECTION_URL

n _CORRELATIONID

n _FOLDER_PATH

n _FROM

n _FTP_PASSWORD

n _FTP_USER

n _HTTP_PASSWORD

n _HTTP_PROXY_URL

n _HTTP_USER

n _IF_EXISTS

n _PARENT_URL

n _PROCESS_VIEWER

n _REPLYTO

n _SUBJECT

n _TARGET_VIEW_MIMETYPE

n _TARGET_VIEW_NAME

n _TEXT_VIEWER_NAME

n _VIEWER_NAME

PACKAGE_TO_WEBDAV
creates a package and sends it to a WebDAV-compliant server. Variables that
control this option include the following:

n _ARCHIVE_NAME

n _ARCHIVE_PATH

n _COLLECTION_URL

n _GENERATED_NAME

n _HTTP_PASSWORD

n _HTTP_PROXY_URL

n _HTTP_TOKENAUTH

n _HTTP_USER

24 Chapter 2 / Writing a SAS Stored Process

n _IF_EXISTS

n _PARENT_URL

n _TARGET_VIEW_MIMETYPE

n _TARGET_VIEW_NAME

n _TEXT_VIEWER_NAME

n _VIEWER_NAME

Almost all of these package option variables have directly equivalent properties in
the package publishing API. For more information about these properties, see the
PACKAGE_PUBLISH documentation in the SAS Publishing Framework:
Developer’s Guide. The property names are the same as the variable names with
the underscore prefix removed.

Using Output Parameters
Output parameters enable stored processes to return SAS macro variables upon
successful execution, and to pass one or more values back to the client. Output
parameters are used mainly with SAS BI Web Services and with stored processes
that are called using the Stored Process Java API.

Output parameters are defined as part of the stored process metadata. Metadata for
output parameters includes the following information: name, type, label, and an
optional description. The name of the output parameter is the name of the SAS
macro variable that is associated with the output parameter. The label specifies the
output parameter name that is displayed to the user. The output parameter can be
any of the following types: Date, Double, Integer, Time, TimeStamp, or String.

Recommended formats for each output parameter type are as follows:

Table 2.2 Formats for Output Parameters

Output Parameter Type Format

Date DATEw.

Double Ew.

Integer 11.0

Note: Integer values can range from
-2,147,483,648 to 2,147,483,647.

Time TIMEw.d

Timestamp DATETIMEw.d

String No format needed.

Using Output Parameters 25

For more information about any of these formats, see SAS Formats and Informats:
Reference.

You can use the PUTN function to specify which numeric format you want the output
parameter to have. The following example shows how to set the format for a
timestamp type output parameter:

* Input value from the prompt;
%let timestamp1 = 17OCT1991:14:45:32;

* Format SAS timestamp value;
%let TimestampOut1 = %sysfunc(putn("×tamp1"dt, DATETIME.));

%put TimestampOut1 parameter is &TimeStampOut1;

The following result is written to the SAS log:

TimestampOut1 parameter is 17OCT91:14:45:32

The following example shows how to set the format for a time type output
parameter:

* Input value from the prompt;
%let time1 = 19:35;

* Format SAS time value;
%let TimeOut1 = %sysfunc(putn("&time1"t, TIME8.));

%put TimeOut1 parameter is &TimeOut1;

The following result is written to the SAS log:

TimeOut1 parameter is 19:35:00

The following example shows how to set the format for a date type output
parameter:

* Input value from the prompt;
%let date1 = 5Dec07;

* Format SAS time value;
%let DateOut1 = %sysfunc(putn("&date1"d, DATE9.));

%put DateOut1 parameter is &DateOut1;

The following result is written to the SAS log:

DateOut1 parameter is 05DEC2007

Using Reserved Macro Variables
Many macro variables are reserved for special purposes in stored processes.
Reserved names generally are prefixed with an underscore character. To avoid
conflicts, do not use the underscore prefix for any application variables. Some
reserved macro variables are created automatically for all stored processes that are
running on a particular server. Some are created by specific stored process client or

26 Chapter 2 / Writing a SAS Stored Process

middle-tier interfaces and are not created or available when other clients call the
stored process.

The following table shows the reserved macro variables that can be used in your
stored processes:

Table 2.3 Reserved Macro Variables

Variable Name Used By Description

_ABSTRACT %STPBEGIN

%STPEND

Is the text string that briefly
describes a package that was
created by %STPBEGIN and
%STPEND.

_ACTION Web Clients Specifies an action for the web
application to take. Possible
values for this variable are as
follows:

BACKGROUND
executes the stored process in
the background.

DATA
displays a summary of general
stored process data.

EXECUTE
executes the stored process.

FORM
displays a custom input form if
one exists. If FORM is the only
value for _ACTION, and no
form is found, then an error is
generated. You can use the
_FORM reserved macro
variable in conjunction with
_ACTION=FORM if you want
to specify custom input forms.

INDEX
displays a tree of all stored
processes. For
_ACTION=INDEX, three HTML
frames are created with the top
frame being the banner frame.

LOGOFF
causes the web application to
terminate the active session
and to display a logoff screen.

NEWWINDOW
displays results in a new
window.

NOALERT
suppresses generation of
alerts.

Using Reserved Macro Variables 27

Variable Name Used By Description

NOBANNER
displays results without adding
a banner.

PROPERTIES
displays the prompt page,
which enables you to set input
parameters and execution
options and to execute the
stored process.

_ACTION (cont’d.) Web Clients RECALL
can be combined with the
PROPERTIES value to retain
prompt values throughout a
session. After you execute the
stored process, you can go
back to the input form and it
will be populated with the
prompt values that you
previously specified.

SEARCH
displays a search page that
enables you to search for a
stored process or stored
process report. You can
combine this value with values
for the _MATCH, _FIELD,
_COLUMNS, _TYPE, or
_PATH variables in order to
specify search parameters.

TREE
displays a tree of all stored
processes. You can combine
this value with values for the
_MATCH, _FIELD,
_COLUMNS, _TYPE, or
_PATH variables in order to
specify display parameters for
the tree view.

XML
can be combined with other
_ACTION values to return XML
data. You can use the following
combinations:

_ACTION=TREE,XML
returns a stored process and
stored process report tree list
in XML.

_ACTION=DATA,XML
returns stored process data in
XML.

_ACTION=
PROPERTIES,XML
returns stored process prompts
in XML.

28 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

_ACTION=SEARCH,XML
returns search results in XML.

_ACTION (cont’d.) Web Clients Values for _ACTION are case
insensitive. Multiple values can
be combined (except when
using INDEX or DATA). Two
common combinations are:

_ACTION=
FORM,PROPERTIES

displays a custom input form if
one exists, otherwise displays
the prompt page.

_ACTION=FORM,EXECUTE
displays a custom input form if
one exists, otherwise executes
the stored process.

_ADDRESSLIST_DATASET_LIBN
AME

_ADDRESSLIST_DATASET_ME
MNAME

_ADDRESSLIST_VARIABLENAM
E

_DATASET_OPTIONS

%STPBEGIN

%STPEND

Specifies a data set that
contains email addresses when
_RESULT is set to
PACKAGE_TO_EMAIL.

_APPLIED_TEXT_VIEWER_NAM
E

_APPLIED_VIEWER_NAME

%STPBEGIN

%STPEND

Specifies the name of the
rendered package view when
_RESULT is set to
PACKAGE_TO_SUBSCRIBERS or
PACKAGE_TO_EMAIL.

_APSLIST Stored
Process
Server

Specifies the list of the names of
all the parameters that were
passed to the program.

_ARCHIVE_FULLPATH %STPBEGIN

%STPEND

Specifies the full path and name
of an archive package that was
created by %STPEND when
_RESULT is set to
PACKAGE_TO_ARCHIVE or
PACKAGE_TO_REQUESTER. This
value is set by %STPEND and is
an output value only. Setting it
before setting %STPEND has
no effect.

_ARCHIVE_NAME %STPBEGIN

%STPEND

Specifies the name of the
archive package to be created
when _RESULT is set to
PACKAGE_TO_ARCHIVE. If this

Using Reserved Macro Variables 29

Variable Name Used By Description

value is not specified or is blank
and _RESULT is set to
PACKAGE_TO_ARCHIVE or
PACKAGE_TO_REQUESTER, then
the package is created with a
new, unique name in the
directory that is specified by
_ARCHIVE_PATH. This value is
set through the Stored Process
Service API and cannot be
directly overridden by a client
input parameter.

_ARCHIVE_PATH %STPBEGIN

%STPEND

Specifies the path of the archive
package to be created when
_RESULT is set to
PACKAGE_TO_ARCHIVE or
PACKAGE_TO_REQUESTER. This
value is set through the Stored
Process Java API and cannot be
directly overridden by a client
input parameter. The special
value TEMPFILE causes the
archive package to be created in
a temporary directory that exists
only until the stored process
completes executing and the
client disconnects from the
server.

_AUTHTYP Web Clients Specifies the name of the
authentication scheme that is
used to identify a web client (for
example, BASIC or SSL), or
"null" (no authentication.) This
variable is not set by default but
can be enabled. For more
information, see “Web
Application Properties” on page
88.

_BASEURL Web Clients Overrides the default value for
_URL. This macro variable is
used mainly with _REPLAY to
return to the correct location.

_CHANNEL %STPBEGIN

%STPEND

Specifies a subscriber channel
when _RESULT is set to
PACKAGE_TO_SUBSCRIBERS. For
more information about channel
names, see
PACKAGE_PUBLISH in the

30 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

SAS Publishing Framework:
Developer’s Guide.

_CLIENT All Identifies the client and version
number, as follows:
_CLIENT=Client_Name;
JVM java_version;
 operating_environment
(operating_environment_architecture)

operating_environment_version

The Client_Name is
automatically obtained through
the Stored Process Java API. If
the API cannot obtain the value
for Client_Name, then the
default value is
StoredProcessService 9.4 (for
example,
_CLIENT=StoredProcessService 9.4; JVM
1.6.0_25; Windows 7 (x86) 6.1).

_COLLECTION_FOLDER %STPBEGIN

%STPEND

Specifies both the parent folder
and the collection folder
together. This variable is relative
to the list name when _RESULT
is set to
PACKAGE_TO_SHAREPOINT.

_COLLECTION_URL %STPBEGIN

%STPEND

Specifies the URL of the
WebDAV collection to be
created when _RESULT is set to
PACKAGE_TO_WEBDAV. See also
_IF_EXISTS. This value is set
through the Stored Process
Java API and cannot be directly
overridden by a client input
parameter.

_COLUMNS Web Clients Specifies which columns are to
be displayed and the order in
which they are presented. You
can specify one or more of the
following values: description,
keywords, createDate (creation
date), or modDate (modified
date). The creation date and
modified date are displayed as
year-month-day. The default is
the name column only.

_DEBUG Web Clients Specifies the debugging flags.
For information about setting the

Using Reserved Macro Variables 31

Variable Name Used By Description

default value of _DEBUG, see
“Setting the Default Value of
_DEBUG” on page 146.

_DEBUG_FILE %STPBEGIN

%STPEND

Specifies the name of the file
that contains debug wire trace
output when _RESULT is set to
PACKAGE_TO_SHAREPOINT.

_DESCRIPTION %STPBEGIN

%STPEND

Descriptive text that is
embedded in a package that
was created by %STPBEGIN
and %STPEND.

_DOMAIN Web Clients Specifies the authentication
domain for the SAS Stored
Process Web Application.

_EMAIL_ADDRESS %STPBEGIN

%STPEND

Specifies destination email
addresses when _RESULT is
set to PACKAGE_TO_EMAIL.
Multiple addresses can be
specified using the multiple
value convention for stored
process parameters.

_ENCODING %STPBEGIN

%STPEND

Sets the encoding for all ODS
output.

_EXPIRATION_DATETIME %STPBEGIN

%STPEND

Specifies the expiration datetime
that is embedded in a package
that was created by
%STPBEGIN and %STPEND.
Must be specified in a valid SAS
datetime syntax.

_FIELD Web Clients Specifies which field to search
for the match string. The
possible fields are name,
description, or keywords. The
keywords field matches only
complete keywords. The default
field is the name field.

_FILE_DESCRIPTION %STPBEGIN

%STPEND

Specifies the description that is
to be used for all files that are
added to a package. You can
add the following values to the
description:

32 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

FILENAME
specifies the name of the file
that is being added to the
package.

DATETIME
specifies the date and time of
package creation.

These values are case sensitive.
For example, you can specify
the following description:
%let _FILE_DESCRIPTION= Date, Time,
 and Filename: _DATETIME_ _FILENAME_;

_FMTSEARCH PROC STP Specifies which format catalogs
need to be appended to the
FMTSEARCH option in the
stored process environment.

_FOLDER_PATH %STPBEGIN

%STPEND

Specifies the folder path for the
channel of interest when
_RESULT is set to
PACKAGE_TO_SUBSCRIBERS.

_FORM Web Clients Specifies the location of a
custom input form JSP file for a
stored process. This value is
used only if _ACTION=FORM is
also present. If the value starts
with a slash (/), then the JSP file
is assumed to be located
relative to the SAS Stored
Process Web Application root.
Otherwise, it is assumed to be a
complete URL and a redirect is
performed to that value.

_FROM %STPBEGIN

%STPEND

Specifies the name or email
address of the sender when
_RESULT is set to
PACKAGE_TO_EMAIL. This value
is the name or email address
that the email appears to be
from.

_GENERATED_NAME %STPBEGIN

%STPEND

Returns the name of the
package or the name of the
folder that contains the package,
whether this value was
generated by SAS or specified
by another variable. This
variable is returned when
_RESULT is set to
PACKAGE_TO_ARCHIVE,

Using Reserved Macro Variables 33

Variable Name Used By Description

PACKAGE_TO_SHAREPOINT, or
PACKAGE_TO_WEBDAV.

_GOPT_DEVICE

_GOPT_HSIZE

_GOPT_VSIZE

_GOPT_XPIXELS

_GOPT_YPIXELS

%STPBEGIN

%STPEND

Sets the corresponding
SAS/GRAPH option. For more
information, see the DEVICE,
HSIZE, VSIZE, XPIXELS, and
YPIXELS options in "Graphics
Options and Device Parameters
Dictionary" in the SAS/GRAPH:
Reference in SAS Help and
Documentation.

_GOPTIONS %STPBEGIN

%STPEND

Sets any SAS/GRAPH option
that is documented in "Graphics
Options and Device Parameters
Dictionary" in the SAS/GRAPH:
Reference in SAS Help and
Documentation. You must
specify the option name and its
value in the syntax that is used
for the GOPTIONS statement.
For example, set _GOPTIONS
to ftext=Swiss htext=2 to
specify the Swiss text font with a
height of 2.

_GRAFLOC Web Clients Specifies the URL for the
location of SAS/GRAPH applets.
This variable is set to /sasweb/
graph for most installations.

_HTACPT Web Clients Specifies the MIME types that
are accepted by the stored
process client. This variable is
not set by default but can be
enabled. For more information,
see “Web Application
Properties” on page 88.

_HTCOOK Web Clients Specifies all of the cookie strings
that the client sent with this
request. This variable is not set
by default but can be enabled.
For more information, see “Web
Application Properties” on page
88.

_HTREFER Web Clients Specifies the address of the
referring page. This variable is
not set by default but can be
enabled. For more information,

34 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

see “Web Application
Properties” on page 88.

_HTTP_PASSWORD %STPBEGIN

%STPEND

Specifies the password that is
used (with _HTTP_USER) to
access the WebDAV server
when _RESULT is set to
PACKAGE_TO_WEBDAV. This value
is set through the Stored
Process Java API and cannot be
directly overridden by a client
input parameter.

_HTTP_PROXY_URL %STPBEGIN

%STPEND

Specifies the Proxy server that
is used to access the WebDAV
server when _RESULT is set to
PACKAGE_TO_WEBDAV. This value
is set through the Stored
Process Java API and cannot be
directly overridden by a client
input parameter.

_HTTP_TOKENAUTH %STPBEGIN

%STPEND

Enables token authentication to
a SAS Content Server when
_RESULT is set to
PACKAGE_TO_WEBDAV. Value must
be set to TRUE, FALSE, YES, or
NO. Do not specify values for
_HTTP_USER or
_HTTP_PASSWORD if you are
using this reserved macro
variable.

_HTTP_USER %STPBEGIN

%STPEND

Specifies the user name that is
used (with
_HTTP_PASSWORD) to access
the WebDAV server when
_RESULT is set to
PACKAGE_TO_WEBDAV. This value
is set through the Stored
Process Java API and cannot be
directly overridden by a client
input parameter.

_HTUA Web Clients Specifies the name of the user
agent. This variable is not set by
default but can be enabled. For
more information, see “Web
Application Properties” on page
88.

_IF_EXISTS %STPBEGIN Can be NOREPLACE, UPDATE,
or UPDATEANY. For more

Using Reserved Macro Variables 35

Variable Name Used By Description

%STPEND information, see the
PACKAGE_PUBLISH options in
the SAS Publishing Framework:
Developer’s Guide.

_INITIALIZE_SITE %STPBEGIN

%STPEND

Enables an administrator to
initialize a SharePoint site when
_RESULT is set to
PACKAGE_TO_SHAREPOINT.

_LIST_NAME %STPBEGIN

%STPEND

Specifies a document library in
the SharePoint site when
_RESULT is set to
PACKAGE_TO_SHAREPOINT.

_MATCH Web Clients Specifies a search string. If no
string is specified, then
everything is a match.

_MESSAGE_QUEUE %STPBEGIN

%STPEND

Specifies a target queue when
_RESULT is set to
PACKAGE_TO_QUEUE. For more
information about queue names,
see the PACKAGE_PUBLISH
documentation in the SAS
Publishing Framework:
Developer’s Guide. Multiple
queues can be specified using
the multiple value convention for
stored process parameters.

_METAFOLDER All Contains the name or path of
the folder for the stored process
that is being executed. For
example, for the stored process:
_PROGRAM=/Sales/Southwest/
 Quarterly Summary

the value of _METAFOLDER
would be:
_METAFOLDER=/Sales/Southwest/

.

_METAPERSON All Specifies the person metadata
name that is associated with the
_METAUSER login variable. The
value of this variable can be
UNKNOWN. This variable cannot
be modified by the client.

_METAUSER All Specifies the login user name
that is used to connect to the

36 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

metadata server. This variable
cannot be modified by the client.

_MSOFFICECLIENT SAS Add-In
for Microsoft
Office

Specifies the Microsoft
application that is currently
executing the stored process.
Valid values for this macro
variable are Excel, Word,
PowerPoint, and Outlook.

_NAMESPACES %STPBEGIN

%STPEND

Applies to packages only. For
more information about this
variable, see the
PACKAGE_BEGIN
documentation in the SAS
Publishing Framework:
Developer’s Guide.

_NAMEVALUE %STPBEGIN

%STPEND

Specifies a list of one or more
name or value pairs that are
used for filtering when
generating packages. For more
information about this variable,
see the PACKAGE_BEGIN
documentation in the SAS
Publishing Framework:
Developer’s Guide.

_ODSDEST %STPBEGIN

%STPEND

Specifies the ODS destination.
The default ODS destination is
HTML if _ODSDEST is not
specified. Valid values of
_ODSDEST include the
following:

n CSV

n CSVALL

n TAGSETS.CSVBYLINE

n HTML

n LATEX

n NONE (no ODS output is
generated)

n PDF

n PS

n RTF

n SASREPORT

n WML

n XML

Using Reserved Macro Variables 37

Variable Name Used By Description

n any tagset destination

_ODSDOC %STPBEGIN

%STPEND

Contains the two-level name of
the ODS Document file that was
created by the STP procedure.

_ODSOPTIONS %STPBEGIN

%STPEND

Specifies options that are to be
appended to the ODS
statement. Do not use this
macro to override options that
are defined by a specific macro
variable. For example, do not
specify ENCODING=value in this
variable because it conflicts with
_ODSENCODING.

Note that NOGTITLE and
NOGFOOTNOTE are appended
to the ODS statement as default
options. You can override this
behavior by specifying GTITLE
or GFOOTNOTE for
_ODSOPTIONS.

_ODSSTYLE %STPBEGIN

%STPEND

Sets the ODS STYLE= option.
You can specify any ODS style
that is valid on your system.

_ODSSTYLESHEET %STPBEGIN

%STPEND

Sets the ODS STYLEHEET=
option. To store a generated
style sheet in a catalog entry
and automatically replay it by
using the SAS Stored Process
Web Application, specify
myfile.css
(url="myfile.css").

_PARENT_FOLDER %STPBEGIN

%STPEND

Specifies the parent folder of a
generated collection name when
_RESULT is set to
PACKAGE_TO_SHAREPOINT. This
variable is relative to the list
name.

_PATH Web Clients Specifies the starting level for
the _ACTION=INDEX display.
The value of _PATH is a folder
name, such as
/Sales/Southwest

.

If this variable is used with
_ACTION=SEARCH, then

38 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

_PATH limits searching to the
specified path and below.

_PROCESS_VIEWER %STPBEGIN

%STPEND

Specifies a character string of
yes to indicate that the rendered
view is delivered in email when
_RESULT is set to
PACKAGE_TO_EMAIL or
PACKAGE_TO_SUBSCRIBERS.

_PROGRAM All Specifies the name of the stored
process. The value of
_PROGRAM is a path, such as
/Sales/Southwest/Quarterly Summary

.

_QRYSTR Web Clients Specifies the query string that is
contained in the request URL
after the path. This variable is
not set by default but can be
enabled. For more information,
see “Web Application
Properties” on page 88.

_REPLAY Stored
Process
Server

Web Clients

Specifies a complete URL for
use with programs that use the
Output Delivery System (ODS).
This URL consists of the values
of _THISSESSION and
_TMPCAT. ODS uses this URL
to create links that replay stored
output when they are loaded by
the user's web browser. This
variable is created by the stored
process server and is not one of
the symbols that is passed from
the SAS Stored Process Web
Application. The _REPLAY
variable is set only if the _URL
variable is passed in from the
client or middle tier.

If you are using the _REPLAY
macro variable with Microsoft
Office, then you build a URL that
uses the _OUTPUTAPP=
parameter. Supported values for
the _OUTPUTAPP= parameter
include EXCEL, WORD, and
POWERPOINT. For example, if
you specify
_OUTPUTAPP=EXCEL in the
URL, then the content type for

Using Reserved Macro Variables 39

Variable Name Used By Description

the replayed output is
application/vnd.ms-excel.

If you need to specify the name
of the file that the _REPLAY
macro variable returns, then you
can use the _CONTDISP
parameter in the URL. The value
of this parameter is echoed back
as a Content-disposition header.

_REPLYTO %STPBEGIN

%STPEND

Specifies a designated email
address to which package
recipients might respond when
_RESULT is set to
PACKAGE_TO_EMAIL.

_REPORT All Specifies the name of the stored
process report. The value of
_REPORT is a path, such as
/myfolder/myreport

.

_REPORTID All Specifies the ID of the
generation of the stored process
report. The value of
_REPORTID is a number, such
as 3.

_REPOSITORY Web Clients Specifies the metadata
repository where the stored
process is registered. The
default repository value is
METASERVER if _REPOSITORY is
not specified.

_REQENCODING Web Clients Specifies the servlet input
encoding. The default encoding
is UTF-8.

_REQMETH Web Clients Specifies the name of the HTTP
method with which this request
was made (for example, GET,
POST, or PUT). This variable is
not set by default but can be
enabled. For more information,
see “Web Application
Properties” on page 88.

_RESULT All Specifies the type of client result
that is to be created by the
stored process. For more
information, see “Setting Result

40 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

Capabilities” on page 16.
Possible values for this variable
are as follows:

STATUS
no output to the client.

STREAM
output is streamed to the client
through _WEBOUT fileref.

PACKAGE_TO_ARCHIVE
package is published to an
archive file.

PACKAGE_TO_REQUESTER
package is returned to the
client. The package can also
be published to an archive file
in this case. This option is valid
only on the workspace server,
and only for stored processes
that are compatible with 9.2.

PACKAGE_TO_WEBDAV
package is published to a
WebDAV server.

PACKAGE
transient package is returned
to the client. This applies only
to the SAS Stored Process
Web Application, and can be
used as a shortcut for
specifying
_RESULT=PACKAGE_TO_ARCHIVE
and _ARCHIVE_PATH=TEMPFILE
in the URL.

The _RESULT value is set
through the Stored Process
Service API and cannot be
directly overridden by a client
input parameter. The value can
be overridden in the stored
process program to use these
additional values:

PACKAGE_TO_EMAIL
package published to one or
more email addresses.

PACKAGE_TO_QUEUE
package published to a
message queue.

PACKAGE_TO_SHAREPOINT
package published to
SharePoint.

PACKAGE_TO_SUBSCRIBERS
package published to a
subscriber channel.

Using Reserved Macro Variables 41

Variable Name Used By Description

_RESULT (cont’d.) All For more information about
these options, see “Using the
%STPBEGIN and %STPEND
Macros” on page 18.

_RMTADDR Web Clients Specifies the Internet Protocol
(IP) address of the client that
sent the request. For many
installations with a firewall
between the client and the web
server or servlet container, this
value is the firewall address
instead of the web browser
client. This variable is not set by
default but can be enabled. For
more information, see “Web
Application Properties” on page
88.

_RMTHOST Web Clients Specifies the fully qualified
name of the client that sent the
request, or the IP address of the
client if the name cannot be
determined. For many
installations with a firewall
between the client and the web
server or servlet container, this
value is the firewall name
instead of the web browser
client. This variable is not set by
default but can be enabled. For
more information, see “Web
Application Properties” on page
88.

_RMTUSER Web Clients Specifies the login ID of the user
making this request if the user
has been authenticated, or
indicates null if the user has not
been authenticated. This
variable is not set by default but
can be enabled. For more
information, see “Web
Application Properties” on page
88.

_SECUREUSERNAME Web Clients Contains the value for the user
name that is obtained from web
client authentication. The
_SECUREUSERNAME macro
variable is created when the
application server executes a
stored process. The value for

42 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

_SECUREUSERNAME is
written into the _username
macro variable if _username
does not already contain a
value.

_SENDER %STPBEGIN

%STPEND

Specifies the email address of
the sender when _RESULT is
set to PACKAGE_TO_EMAIL . A
valid email address should be
specified. This address receives
any bounced or undeliverable
email. This value is the actual
email address that the email is
sent from.

_SESSIONID Stored
Process
Server

Specifies a unique identifier for
the session. The _SESSIONID
variable is created only if a
session has been explicitly
created.

_SITE_URL %STPBEGIN

%STPEND

Specifies the transfer protocol
(HTTP or HTTPS), the host
name, and the SharePoint site
when _RESULT is set to
PACKAGE_TO_SHAREPOINT.

_SRVNAME Web Clients Specifies the host name of the
server that received the request.

_SRVPORT Web Clients Specifies the port number on
which this request was received.

_SRVPROT Web Clients Specifies the name and version
of the protocol that the request
uses in the form protocol/
majorVersion.minorVersion (for
example, HTTP/1.1). This
variable is not set by default but
can be enabled. For more
information, see “Web
Application Properties” on page
88.

_SRVSOFT Web Clients Identifies the web server
software. This variable is not set
by default but can be enabled.
For more information, see “Web
Application Properties” on page
88.

Using Reserved Macro Variables 43

Variable Name Used By Description

_STATUS_MESSAGE Web Clients Returns the value of the SAS
macro variable to the client after
the stored process has been
executed. This macro variable is
useful for returning debugging
information or informational
messages (for example, when
packages are created that are
not displayed).

_STPERROR %STPBEGIN

%STPEND

Specifies a global error variable.
This variable is set to 0 if
%STPBEGIN and %STPEND
complete successfully. This
variable is set to a nonzero
numeric value if an error occurs.

_STPWORK %STPBEGIN

%STPEND

Specifies a temporary working
directory to hold files that are
published in a package. This
variable is set by %STPBEGIN
and is not modified by the stored
process.

_SUBJECT %STPBEGIN

%STPEND

Specifies a subject line when
_RESULT is set to
PACKAGE_TO_EMAIL.

_SUPPRESS_MVARS Stored
Process
Server

Hides all macro variables and
their values from the SAS log
when set to yes or y.

_TARGET Web Clients Specifies the fixed HTML form
target value to use in displays
that are generated by the SAS
Stored Process Web
Application. Use _blank to
always force a new window.

_TARGET_VIEW_MIMETYPE %STPBEGIN

%STPEND

Specifies the MIME type of the
rendered view when _RESULT
is set to PACKAGE_TO_EMAIL,
PACKAGE_TO_SHAREPOINT,
PACKAGE_TO_SUBSCRIBERS, or
PACKAGE_TO_WEBDAV

_TARGET_VIEW_NAME %STPBEGIN

%STPEND

Specifies the name of the
rendered view when _RESULT
is set to PACKAGE_TO_EMAIL,
PACKAGE_TO_SHAREPOINT,

44 Chapter 2 / Writing a SAS Stored Process

Variable Name Used By Description

PACKAGE_TO_SUBSCRIBERS, or
PACKAGE_TO_WEBDAV

_TEXT_VIEWER_NAME %STPBEGIN

%STPEND

Specifies the name of a text
viewer template that formats
package content for viewing in
email when _RESULT is set to
PACKAGE_TO_EMAIL,
PACKAGE_TO_SUBSCRIBERS, or
PACKAGE_TO_WEBDAV.

_THISSESSION Stored
Process
Server

Web Clients

Specifies a URL that is
composed from the values of
_URL and _SESSIONID. This
variable is created by the stored
process server and is used as
the base URL for all URL
references to the current
session. The _THISSESSION
variable is created only if the
_URL variable is passed in and
a session has been explicitly
created.

_TIMEZONE %STPBEGIN

%STPEND

Sets the TIMEZONE SAS
system option. For more
information about this system
option and valid values, see
SAS System Options:
Reference.

_TMPCAT Stored
Process
Server

Specifies a unique, temporary
catalog name. This catalog can
be used to store temporary
entries to be retrieved later. In
socket servers, the _TMPCAT
catalog is deleted after a
number of minutes that are
specified in the variable
_EXPIRE. This variable is
created by the stored process
server and is not one of the
symbols that is passed from the
SAS Stored Process Web
Application.

_TYPE Web Clients Indicates what type of object to
search for. You can specify
storedprocess or report
(stored process report) to limit
the search to one of these object

Using Reserved Macro Variables 45

Variable Name Used By Description

types. The default is to search
for both.

_URL Web Clients Specifies the URL of the web
server middle tier that is used to
access the stored process.

_USERLOCALE Web Clients Contains the locale for the user
that was set in the user
preferences. If this value was
not set, it contains the locale
sent in the HTTP request
Accept-Language header.

_username Web Clients Specifies the value for the user
name that is obtained from web
client authentication.

_VERSION Web Clients Specifies the SAS Stored
Process Web Application
version and build number.

_VIEWER_NAME %STPBEGIN

%STPEND

Specifies the name of the HTML
viewer template to be applied
when _RESULT is set to
PACKAGE_TO_EMAIL,
PACKAGE_TO_SHAREPOINT,
PACKAGE_TO_SUBSCRIBERS, or
PACKAGE_TO_WEBDAV.

_WELCOME Web Clients Specifies an initial page to
display in the web application. If
the value starts with a slash (/),
then the Welcome page is
relative to the web application
root context, and the web
browser is forwarded to that
page. Otherwise, a redirect
command is sent to the web
browser for the specified page.

SYSPROCESSMODE All returns the server type that the
stored process uses to execute.
For stored processes, one of the
following values is returned:

n SAS Workspace Server

n SAS Pooled Workspace
Server

n SAS Stored Process Server

See “SYSPROCESSMODE
Automatic Macro Variable” in

46 Chapter 2 / Writing a SAS Stored Process

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en

Variable Name Used By Description

SAS Macro Language:
Reference for more information
about using the automatic macro
variable SYSPROCESSMODE.

Most of the reserved macro variables that are related to package publishing have an
equivalent property or parameter in SAS Publishing Framework. For a description of
these variables, see the documentation for PACKAGE_PUBLISH and
PACKAGE_BEGIN in the SAS Publishing Framework: Developer’s Guide.

Using Sessions

Overview of Sessions
The web is a stateless environment. A client request to a server does not know
about preceding requests. The web is a simple environment for client and server
developers, but it is difficult for application programmers. Often, programmers want
to carry information from one request to the next. This is known as maintaining
state. Sessions provide a convenient way to maintain state across multiple stored
process requests.

A session is the data that is saved from one stored process execution to the next.
The session data consists of macro variables and library members (data sets and
catalogs) that the stored process has explicitly saved. The session data is scoped
so that all users have independent sessions. For more information, see “Using
Sessions in a Sample Web Application ” on page 134.

Creating a Session
The stored process must explicitly create a session with the STPSRV_SESSION
function, as follows:

In macro:

 %let rc=%sysfunc(stpsrv_session(create));

In DATA step or SCL:

 rc=stpsrv_session('create');

Creating a session sets the global macro variables _SESSIONID and
_THISSESSION and creates the SAVE session library.

Using Sessions 47

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en

Using the Session
A session saves all global macro variables whose names begin with SAVE_. For
example, the following statements cause the macro variable save_mytext to be
available in subsequent stored processes that share the same session:

 %global save_mytext;
 %let save_mytext="Text to be saved
 for the life of the session";

Data sets and catalogs can also be saved across program requests using the SAVE
library. Data sets and catalogs that are created in or copied to this library are
available to all future stored processes that execute in the same session.

Creating a session causes the automatic variables _THISSESSION and
_SESSIONID to be set. Sample values for these variables are as follows:

 %let rc=%sysfunc(stpsrv_session(create));
 %put _SESSIONID=&_SESSIONID;
 _SESSIONID=7CF645EB-6E23-4853-8042-BBEA7F866B55
 %put _THISSESSION=&_THISSESSION;
 _THISSESSION=/SASStoredProcess/do?_sessionid=
 7CF645EB-6E23-4853-8042-BBEA7F866B55

These variables can be used to construct URLs or HTML forms that execute
another stored process in the same session. For example:

 %let rc=%sysfunc(stpsrv_session(create));
 data _null;
 file _webout;
 put '<HTML>';
 put '<BODY>';
 put '<H1>Session Test Page</H1>';

 /* Link to another stored process in the same session */
 put '<A HREF="' "&_THISSESSION"
 '&_PROGRAM=/Test/Test2">Test';
 put '</BODY>';
 put '</HTML>';
 run;

Note: The _THISSESSION variable is not identical to the _THISSESSION variable
that is used in SAS/IntrNet. If you are converting an existing SAS/IntrNet program to
a stored process, any references to symget('_THISSESSION') should generally be
replaced with "&_THISSESSION". For more information, see Appendix 2, “Converting
SAS/IntrNet Programs to SAS Stored Processes,” on page 185.

48 Chapter 2 / Writing a SAS Stored Process

Deleting the Session
Sessions expire after a period of inactivity. The default expiration time is 15 minutes.
The expiration time can be changed using the STPSRVSET function, as follows
where the time-out is specified in seconds:

In macro:

 %let rc=%sysfunc(stpsrvset(session timeout,300));

In DATA step or SCL:

 rc=stpsrvset('session timeout',300);

If the session is not accessed for the length of the time-out, the server deletes the
session, the associated SAVE library, and all associated macro values. Any further
attempts to access the session result in an invalid or expired session error.

Sessions can be explicitly destroyed using the STPSRV_SESSION function, as
follows:

In macro:

 %let rc=%sysfunc(stpsrv_session(delete));

In DATA step or SCL:

 rc=stpsrv_session('delete');

Submitting this code does not immediately delete the session. The session is
marked for deletion only at the completion of the stored process. For this reason, a
stored process cannot delete a session and create a new session.

Limitations
Stored process sessions are supported only by the stored process server. Stored
processes that execute on a workspace server cannot create or access sessions.

A session exists in the server process where it was created. All stored processes
that access that session must execute in the same server process. Load balancing
and other execution dispatching features are typically ignored when using sessions
that might have an impact on application performance and scalability. Sessions are
not recommended for applications with small amounts of state information; use a
client-based method for maintaining state instead.

Using Sessions 49

50 Chapter 2 / Writing a SAS Stored Process

3
Stored Process Server Functions

Using Stored Process Server Functions . 51

Dictionary . 51
STPSRVGETC Function . 51
STPSRVGETN Function . 53
STPSRVSET Function . 54
STPSRV_HEADER Function . 55
STPSRV_SESSION Function . 56
STPSRV_UNQUOTE2 Function . 57

Using Stored Process Server Functions
Stored process server functions are DATA step functions that you use to define
character, numeric, and alphanumeric strings to generate output in the desired
format. The SAS Stored Process Server functions can be used to return the correct
character, numeric, or alphanumeric value of a parameter setting.

Note: You can also use APPSRV syntax from the Application Dispatcher in place of
these functions. For more information, see the SAS/IntrNet: Application Dispatcher
documentation.

Dictionary

51

STPSRVGETC Function
Returns the character value of a server property.

Category: Character

Syntax
STPSRVGETC(valuecode)

Required Argument
valuecode

is the character string name of the property.

Details
The STPSRVGETC function takes one character string property and returns a
character string result.

Note: The APPSRVGETC function can be used instead of STPSRVGETC. This
feature is provided in order to enable you to convert existing SAS/IntrNet programs
to stored processes.

Example
Table 3.1 Sample Statements and Results

SAS Statements Results

sencoding=stpsrvgetc('Default
 Output Encoding');
put sencoding=;

sencoding=WLATIN1

version=stpsrvgetc('version');
put version=;

version=SAS Stored
Processes
Version 9.4 (Build 330)

52 Chapter 3 / Stored Process Server Functions

STPSRVGETN Function
Returns the numeric value of a server property.

Category: Numeric

Syntax
STPSRVGETN(valuecode)

Required Argument
valuecode

is the character string name of the property.

Details
The STPSRVGETN function takes one character string property and returns a
numeric string result.

Note: The APPSRVGETN function can be used instead of STPSRVGETN. This
feature is provided in order to enable you to convert existing SAS/IntrNet programs
to stored processes.

Example
Table 3.2 Sample Statements and Results

SAS Statements Results

dsesstimeout=stpsrvgetn('default
 session timeout');
put dsesstimeout=;

dsesstimeout=900

sessmaxtimeout=stpsrvgetn('maximum
 session timeout');
put sessmaxtimeout=;

sessmaxtimeout=3600

session=stpsrvgetn('session
 timeout');
put session=;

session=900

STPSRVGETN Function 53

SAS Statements Results

maxconreqs=stpsrvgetn('maximum
 concurrent requests');
put maxconreqs=;

maxconreqs=1

deflrecl=stpsrvgetn('default
 output lrecl');
put deflrecl=;

deflrecl=65535

version=stpsrvgetn('version');
put version=;

version=9.4

STPSRVSET Function
Sets the value of a server session time-out.

Category: Character

Syntax
STPSRVSET(SESSION TIMEOUT, newvalue)

Required Arguments
SESSION TIMEOUT

is the character string name of the property that specifies that the server session
time-out value is being set.

newvalue
specifies the number of seconds that elapse before a session expires. The
default session time-out is 900 (15 minutes).

Details
The STPSRVSET function takes one character string property (SESSION TIMEOUT)
and one numeric string property (the number of seconds before the session expires)
and returns a numeric string result. The return code is zero for success, nonzero for
failure.

Note: The APPSRVSET function can be used instead of STPSRVSET. This feature
is provided in order to enable you to convert existing SAS/IntrNet programs to
stored processes. The following Application Dispatcher properties are not supported

54 Chapter 3 / Stored Process Server Functions

by the SAS Stored Process Server: REQUIRE COOKIE, REQUEST TIMEOUT, and
AUTOMATIC HEADERS.

Example
This example shows how to set the session time-out to 900 seconds:

rc=stpsrvset('session timeout',900);

STPSRV_HEADER Function
Adds or modifies a header.

Category: Character

Syntax
STPSRV_HEADER(Header Name,Header Value)

Required Arguments
Header Name

is the name of the header to set or reset.

Header Value
is the new value for the header.

Details
The STPSRV_HEADER function enables automatic header generation. You can
add a header to the default list or modify an existing header from the list. When you
modify the value of an existing header, the old value becomes the return value of
the function.

The automatic HTTP header generation feature recognizes Output Delivery System
(ODS) output types and generates appropriate default content-type headers. If no
content type is specified with STPSRV_HEADER, then ODS is not used and no
HTTP header is written to _WEBOUT. A default Content-type: text/html header
is generated. For a list of commonly used HTTP headers, see “Using HTTP
Headers” on page 120.

STPSRV_HEADER Function 55

Note: The APPSRV_HEADER function can be used instead of STPSRV_HEADER.
This feature is provided in order to enable you to convert existing SAS/IntrNet
programs to stored processes.

Example
Table 3.3 Sample Statements and Resulting Headers

SAS Statements Resulting Headers

No calls to stpsrv_header Content-type: text/html

/* add expires header */
rc = stpsrv_header('Expires','Thu,
 18 Nov 1999 12:23:34 GMT');

Content-type: text/html
Expires: Thu, 18 Nov 1999
 12:23:34 GMT

/* add expires header */
rc = stpsrv_header('Expires','Thu,
 18 Nov 1999 12:23:34 GMT');
/* add pragma header*/
rc = stpsrv_header('Cache-control',
 'no-cache');

Content-type: text/html
Expires: Thu, 18 Nov 1999
 12:23:34 GMT
Cache-control: no-cache

/* add expires header */
rc = stpsrv_header('Expires','Thu,
 18 Nov 1999 12:23:34 GMT');
/* add pragma header*/
rc = stpsrv_header('Cache-control',
 'no-cache');
...
/* remove expires header, rc
 contains old value */
rc = stpsrv_header('Expires','');

Content-type: text/html
Cache-control: no-cache

STPSRV_SESSION Function
Creates or deletes a session.

Category: Character

Syntax
STPSRV_SESSION('command',<timeout>)

56 Chapter 3 / Stored Process Server Functions

Required Argument
command

is the command to be performed. Allowed values are CREATE and DELETE.

Optional Argument
timeout

is the optional session time-out in seconds. This property is valid only when you
specify the value CREATE for the command property.

Details
The STPSRV_SESSION function creates or deletes a session. The function returns
zero for a successful completion. A nonzero return value indicates an error
condition.

Note: The APPSRV_SESSION function can be used instead of
STPSRV_SESSION. This feature is provided in order to enable you to convert
existing SAS/IntrNet programs to stored processes.

Example
Table 3.4 Sample Statements

SAS Statements

rc=stpsrv_session('create', 600);

rc=stpsrv_session('delete');

STPSRV_UNQUOTE2 Function
Unmasks quotation mark characters in an input parameter.

Category: Character

Syntax
STPSRV_UNQUOTE2(paramname)

STPSRV_UNQUOTE2 Function 57

Required Argument
paramname

is the character string name of the parameter.

Details
The STPSRV_UNQUOTE2 CALL routine takes the name of an input parameter (or
any global macro variable) and unmasks matched pairs of single or double
quotation marks. The CALL routine does not return a value. Instead, it modifies the
specified macro variable. This CALL routine can be used to selectively remove
quotation marks from stored process input parameters so that they can be used in
statements that require quotation marks.

Example
This CALL routine is typically called with %SYSCALL in open macro code, as
follows:

 /* MYGOPTIONS is an input parameter and might contain quotation
 marks, for example: dashline='c000000000000000'x */
 %SYSCALL STPSRV_UNQUOTE2(MYGOPTIONS);

 /* Quote characters are now interpreted as expected */
 goptions &MYGOPTIONS;
 ...

58 Chapter 3 / Stored Process Server Functions

4
Managing Stored Process
Metadata

Choosing or Defining a Server . 59
Types of Servers That Host Stored Processes . 59
SAS Stored Process Server . 60
SAS Workspace Server . 61

Using Source Code Repositories . 61

Registering the Stored Process Metadata . 62

Developing Stored Processes with Package Results . 64
Overview . 64
Create Permanent Package Results . 64
Creating Transient Package Results . 70

Using Prompts . 70

Making Stored Processes Compatible with 9.2 and Upgrading
Stored Processes . 71

Choosing or Defining a Server

Types of Servers That Host Stored Processes
You must choose a server (for stored processes that are compatible with 9.2) or
application server context to host your stored process. Servers are defined in
metadata and are actually logical server definitions that can represent one or more
physical server processes. There are many options, including pre-started servers,
servers that are started on demand, and servers that are distributed across multiple
hardware systems. You can use the Server Manager in SAS Management Console
to create or modify server definitions. For more information about server

59

configurations, see the SAS Intelligence Platform: Application Server Administration
Guide.

Because the logical server description in metadata hides the server implementation
details, a stored process can be moved to or associated with any appropriate server
without modifying the stored process. Moving a stored process from one server to
another requires changing only the metadata association and moving the source
code, if necessary. A stored process is the combination of a SAS program, the
server that hosts that program, and the metadata that describes and associates the
two. For stored processes that are compatible with 9.2, it is not possible to create a
stored process that is associated with more than one server, although it is possible
to create stored processes that share the same SAS program or source file. Starting
with 9.3, stored processes can be run from multiple application servers.

Stored processes can be hosted by two types of servers: SAS Stored Process
Servers and SAS Workspace Servers. The two servers are similar, but they have
slightly different capabilities and they are targeted at different use cases.

Starting with 9.3, stored processes are associated with an application server context
instead of a specific logical server. The application server context defines the
environment in which the stored process executes. Application server contexts
typically contain multiple server definitions. Stored processes can be executed on
several server types. The server type is selected at run-time based on client
preferences and constraints defined in the stored process metadata. You can
choose whether to restrict the stored process to run on a stored process server only
or on a workspace server only, or you can choose to allow the client application to
run the stored process on the default server type. In this case, the stored process
server is used unless the client application specifies to use the workspace server.

Note: You can use the SYSPROCESSMODE automatic macro variable to find out
which server type the stored process is using to execute.
See“SYSPROCESSMODE Automatic Macro Variable” in SAS Macro Language:
Referencefor more information about using the automatic macro variable
SYSPROCESSMODE.

SAS Stored Process Server
The SAS Stored Process Server is a multi-user server. A single server process can
be shared by many clients. The recommended load-balancing configuration enables
client requests to be serviced by multiple server processes across one or more
hardware systems. This approach provides a high-performance, scalable server, but
it imposes some restrictions. Because the same server handles requests from
multiple users, it cannot easily impersonate a user to perform security checks. By
default, the server runs under a single, shared user identity (defined in metadata) for
all requests. All security checks based on client identity must be performed in the
stored process. For more information about stored process server security, see the
SAS Intelligence Platform: Application Server Administration Guide.

The stored process server implements some features that are not available on the
workspace server, including replay (such as graphics in streaming output) and
sessions (see “Using Sessions” on page 47).

60 Chapter 4 / Managing Stored Process Metadata

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en

SAS Workspace Server
The SAS Workspace Server is a single-user server. A new server process is started
for each client, then terminated after the stored process completes execution. This
approach is not as scalable as the load-balanced stored process server, but it has a
major security advantage. Each server is started under the client user identity and is
subject to host operating environment permissions and rights for that client user.
The workspace server also provides additional functionality, including data access
and execution of client-submitted SAS code. For more information about workspace
server security, see the SAS Intelligence Platform: Application Server Administration
Guide.

Starting with 9.3, the workspace server supports streaming output and web
services. If you use the workspace server to execute a stored process with
streaming output and static images are missing from the output, you can try making
any of the following changes:

n Change the graph format to ActiveX or Java.

n Change the result format to PDF or RTF.

n Update the stored process to produce package output.

Note: Information map stored processes are supported only on the workspace
server.

The pooled workspace server is very similar to the standard workspace server, but it
provides higher performance by reusing existing server instances instead of starting
a new server for each client. Pooled workspace servers must run under group
identities to allow reuse across groups of users.

Using Source Code Repositories
Starting with 9.3, stored process source code can be stored in metadata. If the code
is not stored in metadata, then stored processes are stored in external files with
a .sas extension. The .sas file must reside in a directory that is registered with the
server that executes the stored process. These directories are known as source
code repositories. Source code repositories are managed using the New Stored
Process wizard or the Stored Process Properties dialog box in SAS Management
Console. After you choose a server for your stored process in the New Stored
Process wizard or in the Stored Process Properties dialog box, you can choose
whether to store the source code in metadata (starting with 9.3) or on the server. If
you store the source code on the server, you are presented with a list of available
source code repositories. You can choose an existing source code repository or
click Manage to add or modify source code repositories.

For z/OS, the program can be contained in an HFS .sas file or in a member of a
partitioned data set (PDS). Source code repositories can be either HFS directories
or a partitioned data set.

Using Source Code Repositories 61

Registering the Stored Process Metadata
After you write the stored process and define or choose a server, you must register
the metadata by using the New Stored Process wizard in SAS Management
Console. (SAS Enterprise Guide users can perform the same steps within the SAS
Enterprise Guide application.) The New Stored Process wizard can be used to
create new stored processes, or you can use the Stored Process Properties dialog
box in SAS Management Console to modify existing stored processes. You can
specify and manage the following information for stored processes:

Folder
specifies the metadata location where the stored process is registered. The
folders are defined in metadata and do not correspond to any physical location.
The folder hierarchies that are used for stored processes can also hold other
objects such as SAS reports, information maps, and administrative metadata.
You can create and modify folders using SAS Management Console.

Name
specifies the stored process name, which acts as both a display label and as
part of the URI for the stored process.

Description
specifies an optional text description of the stored process.

Keywords
specifies an optional list of keywords to associate with the stored process.
Keywords are arbitrary text strings that are typically used for searching or to
indicate specific capabilities. For example, the keyword XMLA Web Service is
used to indicate a stored process that can be executed by SAS BI Web Services
by using the XMLA calling convention.

Responsibilities
specifies one or more users who are responsible for the stored process. This
information is optional.

Hide from user
enables you to hide the stored process from the folder view and search results in
a client application. The stored process is hidden only in clients that support this
feature. The stored process is hidden from all users, even unrestricted users.
The stored process is not hidden in SAS Management Console.

SAS server or Application server
specifies the server or application server context, respectively, that executes the
stored process. For more information, see “Choosing or Defining a Server” on
page 59.

Server type (available starting with 9.3)
specifies the type of server that runs the stored process that you are defining. If
you choose Default server, then either a SAS Stored Process Server or a SAS
Workspace Server can be used, depending on which one is available to the
client running the stored process. If this option is selected, then the stored
process server is used unless the client application specifies to use a workspace
server. Select Stored process server only if the stored process uses sessions
or if it uses replay (for example, to produce graphics in streaming output). Select

62 Chapter 4 / Managing Stored Process Metadata

Workspace server only if the stored process must be run under the client
identity.

Source location and execution (available starting with 9.3)
specifies whether the stored process can be executed on other application
servers or only on the selected application server, and where the source code is
stored. If you allow the stored process to be executed on other application
servers, then the source code is stored in metadata. If you allow execution on
the selected application server only, then you must specify whether the source
code is stored in metadata or on the application server. If the source code is
stored on the application server, then you must specify the source code
repository and source file.

Source Code Repository and Source File
specifies the directory and source file that contain the stored process. For more
information, see “Using Source Code Repositories” on page 61.

Edit Source Code (or Edit)
enables you to add or edit the source code for the stored process.

Result capabilities (or Results)
specifies the type of output that the stored process can produce. For more
information, see “Setting Result Capabilities” on page 16.

Parameters
specifies input parameters or output parameters for the stored process.
Parameters are optional. For more information, see “Using Input Parameters” on
page 8 or “Using Output Parameters” on page 25.

Data Sources and Data Targets
specifies an optional list of data sources and data targets for the stored process.
Streams can be used to send data that is too large to be passed in parameters
between the client and the executing stored process. Definitions for data sources
and data targets can also include an XML schema specification or a data table.

Authorization
specifies access controls for the stored process. Currently only the
ReadMetadata and WriteMetadata permissions are honored. A user must have
ReadMetadata permission to execute the stored process. WriteMetadata
permission is required to modify the stored process definition.

You cannot specify authorization information from the New Stored Process
wizard. To specify authorization information, you must open the Stored Process
Properties dialog box for an existing stored process.

This metadata is stored on the SAS Metadata Server so that it can be accessed by
client applications. For more information about using the New Stored Process
wizard or the Stored Process Properties dialog box to create and maintain the
metadata defining a stored process, see the Help in SAS Management Console.

Note: Starting with SAS 9.2, you can register and modify the metadata for stored
processes programmatically by using a Java API.

Registering the Stored Process Metadata 63

Developing Stored Processes with
Package Results

Overview
Prior to SAS 9.2, when the user created a stored process by using SAS
Management Console and chose to create permanent package results, there was a
Permanent Package Details dialog box for providing the required information.

Starting with SAS 9.2, the Permanent Package Details dialog box has been
removed and the user is now responsible for providing this information by using the
new prompt framework instead. A set of shared prompt groups that contain this
information has been created for convenience.

If you have stored processes that were created in SAS 9.1.3 with package results,
you can migrate or promote these to SAS 9.4. Any necessary hidden prompts are
created automatically by the import process.

Create Permanent Package Results
To create a stored process with a permanent result package, perform the following
steps:

1 In the New Stored Process wizard, when you are defining the stored process,
select the Package check box to specify result capabilities for the stored
process.

64 Chapter 4 / Managing Stored Process Metadata

2 On the Parameters page of the New Stored Process wizard, click Add Shared to
load one of the predefined shared prompt groups for package result parameters.

3 In the Select a Shared Group or Prompt dialog box, navigate to the
Products/SAS Intelligence Platform/Samples/ folder. Select the appropriate
shared prompt group. The names of these all begin with Package. Some of these
are SAS server specific (that is, stored process server versus workspace server).
So if you chose a stored process server as the SAS server, you should choose a
prompt group ending in (STP Servers).

In the Add Prompt dialog box, click OK to accept the prompt group displayed
text. You have included a reference to the shared prompt group in your stored
process. You are not currently allowed to edit the shared prompts.

Developing Stored Processes with Package Results 65

4 The prompts must be unshared to make them editable. To unshare the prompts,
select the prompt group (for example, Package — File System with Archive
Name), and click Unshare.

Click Yes to continue. This operation gives you your own copy of the data from
the shared prompt group, so you can modify it.

5 If you have not already done so, expand the prompt group to display its
members. Double-click the first prompt to open it.

66 Chapter 4 / Managing Stored Process Metadata

In this example, for the _RESULT prompt, the comment in the Description field
tells you Do not modify. Close the Edit Prompt dialog box without modifying the
prompt.

6 Open the remaining prompts in the group. In this example, _ARCHIVE_PATH is
next.

Developing Stored Processes with Package Results 67

No changes are needed for the General tab. The description text tells you what
type of value needs to be supplied for this prompt.

Click the Prompt Type and Values tab.

68 Chapter 4 / Managing Stored Process Metadata

Notice that the Default value needs to be supplied (as indicated by the text
Supply_Valid_Value). Set it to a valid value (for example, a physical path on the
file system such as C:\temp). Click OK to accept changes and close the prompt.

7 Repeat this process for the remaining prompts in the group, examining prompt
properties, and making necessary changes.

8 Click Next in the New Stored Process wizard if you have data sources or data
targets to define. Otherwise, click Finish.

9 Create the SAS program and save it. Use the source filename and source code
repository path that you specified in the New Stored Process wizard.

10 When the stored process is executed, the prompts in the prompt group remain
hidden, and the user does not see them. The default values that you specified
when you edited them are supplied to the server. If you want to show the
prompts at run time, then you need to make the prompt group visible. Make any
or all of the prompts visible by deselecting the Hide from user check box for
each prompt and prompt group.

The SAS code in the previous step writes a SAS package file under the C:\temp
folder. This package can be opened with WinZip. This content is also returned back
to the calling client as HTML.

Developing Stored Processes with Package Results 69

Creating Transient Package Results
If transient package results are desired, select Package as the result capability in the
New Stored Process wizard. None of the special shared prompt groups needs to be
added to the stored process. The SAS code returns the package content to the
caller when the stored process is executed, but it is not to be written or published to
any of the permanent destinations.

Using Prompts
Input parameters are defined in SAS Management Console as prompts. You can
add prompts or prompt groups when you are using the New Stored Process wizard
to register a new stored process or when you are viewing properties for a currently
registered stored process. The following features are available with prompts:

dynamic prompts
Dynamic prompts allow the lookup of possible prompt values from a data source
such as a SAS data set or information map.

dependencies between prompts
When you create a set of prompts, you sometimes want the prompts to be
interrelated. You might want the values of one prompt to depend on the value
that is selected for another prompt. In that case, you would want to set up
dependencies between the prompts.

For example, you have a prompt whose values are the names of the divisions in
your organization. You also have a prompt whose values are the names of the
departments in those divisions. If you want the end user to see only the
departments for the selected division, then you set the department prompt to be
dependent on the division prompt. After you select a value for the division
prompt, the department prompt is then populated with only the names of the
departments from that division.

shared prompts and prompt groups
A shared prompt is a prompt that is stored in a shared location and that can be
accessed by multiple users, applications, and software features. Prompt groups
can also be shared. Sharing prompts is helpful when that prompt is complex or
when you might need to reuse that prompt (perhaps in other applications or
contexts). The following examples are good candidates for sharing:

n dynamic prompts with complex configurations

n sets of cascaded prompts

n groups of prompts that are often reused (like chart options)

selection groups
Use a selection group when you want the user to choose from several prompt
groups. Selection groups contain selection-dependent groups. Each selection-
dependent group is displayed as one of the selections for its parent selection
group. The contents (subgroups and prompts) of a selection-dependent group

70 Chapter 4 / Managing Stored Process Metadata

are displayed to the end user only after the user selects that group for the parent
selection group. For example:

n A user is given a choice of Laptop or Desktop for a computer type prompt.

n If the user selects Laptop as the value of the computer type prompt, then the
user receives prompts for Battery Type, Hard Drive Size, and Processor
Speed.

n If the user selects Desktop as the value of the computer type prompt, then
the user receives prompts for Hard Drive Size, Processor Speed, and Type
of Keyboard.

When you run a stored process that contains prompts, one or more macro variables
is generated for each prompt. The values that are specified for the prompts at run
time are assigned to the generated macro variables. When a prompt generates
more than one macro variable, suffixes such as _REL, _MIN, and _MAX are
appended to the prompt name to create unique names for these macro variables.
Because macro variables are limited to 32 characters in length, you must use
caution when specifying a prompt name. If a suffix of _REL (4 characters long) is
added to the prompt name to generate a macro variable, then you should not
specify a prompt name that is more than 28 characters long. For more information
about how macro variables are generated and the suffixes that are used, see the
prompt Help in SAS Management Console.

For more information about input parameters in stored processes, see “Using Input
Parameters” on page 8. For more information about how to specify values for
prompt, and macro variables that are generated by prompts, see Appendix 3,
“Formatting Prompt Values and Generating Macro Variables from Prompts,” on page
209. For more information about prompt types and defining prompts, see the prompt
Help in SAS Management Console.

Making Stored Processes Compatible
with 9.2 and Upgrading Stored
Processes

Starting with 9.3, you can use new stored process features, or you can choose to
make your stored processes compatible with 9.2. If your client does not support new
stored process features, then you might need to make your stored processes
compatible with 9.2. Stored processes that are compatible with 9.2 can also be
upgraded to use the new stored process features. The following table shows the
differences between stored processes that are compatible with 9.2 and stored
processes that use newer features:

Stored Process That Are
Compatible with 9.2 Stored Processes That Use Newer Features

Are associated with a specific
logical server, which can be a

Are associated with an application server
context, and can be run by either a stored
process server or a workspace server. You can

Making Stored Processes Compatible with 9.2 and Upgrading Stored Processes 71

Stored Process That Are
Compatible with 9.2 Stored Processes That Use Newer Features

stored process server or a
workspace server.

choose whether to restrict the server type or let
the client application make the server selection.

Store source code on the
application server.

Can store source code either on the application
server, or in metadata.

Allow execution on the specified
application server only.

Can allow execution on other application
servers, or on the specified application server
only.

Require the *ProcessBody;
comment if they are running on a
workspace server.

Do not require the *ProcessBody; comment,
regardless of which server is used.

Must use the stored process server
to produce streaming output.

Can use either the stored process server or the
workspace server to produce streaming output.

Data sources and targets can be
generic streams or XML streams.

Data sources and targets can be generic
streams, XML streams, or data tables.

To make stored processes compatible with 9.2, select one or more stored processes
in SAS Management Console. It is helpful to open the Stored Process Properties
dialog box for each stored process to make sure that none of the newer features are
being used. (See the product Help.) Right-click and select Make Compatible. If the
stored process runs on a workspace server, make sure that the *ProcessBody;
comment is included in the source code.

To upgrade stored processes to use newer features, select one or more stored
processes that are compatible with 9.2. Right-click and select Upgrade. Open the
Stored Process Properties dialog box for each stored process to use the newer
features.

72 Chapter 4 / Managing Stored Process Metadata

5
Debugging Stored Processes

Examining the SAS Log . 73

Using SAS Options . 74

Examining the SAS Log
The client interfaces that are provided to stored processes usually include a
mechanism for retrieving the SAS log from a stored process. For example, passing
the input parameter _DEBUG=LOG to the SAS Stored Process Web Application
causes the SAS log to be returned with the stored process output. The SAS log is
directly accessible from the Stored Process Java API. Assuming that your
installation is configured correctly, most run-time stored process errors appear in the
SAS log.

If you are unable to access the SAS log from the client interface, you might be able
to access the SAS log from the server log files. The server administrator controls the
level of server logging that is used and the location of the server log files. Server log
options vary depending on the server type.

Stored process and workspace servers enable you to capture the SAS log for each
stored process in the server log. To enable logging for the server, perform the
following steps:

1 In the .../Lev1/SASApp/StoredProcessServer/ directory, rename the
logconfig.xml file as logconfig_orig.xml.

Note: For a workspace server, this file is located in the .../Lev1/SASApp/
WorkspaceServer/ directory.

2 Make a copy of the logconfig.trace.xml file (which is located in the same
directory), and name the copy logconfig.xml.

3 Restart the Object Spawner.

73

Note: If you enable logging for the workspace server, then all users who run
workspace server requests must have Write access to the location where the log
files are written (because the workspace server runs under the client user's
account).

For more information about SAS logging, see SAS Logging: Configuration and
Programming Reference.

Using SAS Options
Several SAS options can help you debug problems in your stored processes. If you
can return the SAS log to your web browser, then activating some of these options
can make that log more useful. If you are debugging a stored process that contains
macro code, you should supply one or more of these options at the beginning of
your stored process: MPRINT, SYMBOLGEN, MLOGIC, or MERROR.

If, for security reasons, you have disabled the display of submitted source code in
your stored process by using the NOSOURCE option when you are debugging, you
should enable this feature by supplying the SOURCE option. You can then see your
submitted SAS code in the log that is returned to your web browser. After you are
finished debugging, you can revert to using NOSOURCE if your security model
requires it.

74 Chapter 5 / Debugging Stored Processes

6
Composing Stored Process
Reports

Overview of Stored Process Reports . 75

Creating and Managing Stored Process Reports . 76

Overview of Stored Process Reports
A stored process report consists of stored process output that is cached. The output
can be viewed without re-executing the stored process. A stored process report is a
view of a stored process. Stored process reports are targeted at stored processes
that might involve substantial processing, but do not require real-time updates. A
stored process report generated by a stored process can change on a daily, weekly,
monthly, or quarterly basis and these stored process reports can now be easily
generated without needless repetition of the stored process execution.

SAS Management Console is the design-time environment for stored process
reports. Stored process report definitions can be created and modified in the SAS
Management Console Folder view. When you create a stored process report, you
must specify a stored process and the prompt values that are used to generate the
stored process report. All prompt values must be fixed when the stored process
report is created. These values are used each time new stored process report
output needs to be generated. You can export, import, copy, and paste the stored
process report definition, but not the associated stored process report packages.

The output of a stored process report is a result package. Result packages are
saved in the SAS Content Server and managed by the stored process report. All
cached result packages are deleted when a stored process report is deleted. A
stored process report client accesses the stored process report by retrieving the
result package through the object API. If a package exists and has not expired, the
package is returned to the caller with no additional processing. If no package exists
or the package has expired, the stored process is executed to create an up-to-date
result package (if the user has permission to execute the stored process and to
save data on the SAS Content Server). After the stored process has been executed,

75

the new result package is returned to the client and any expired packages are
deleted.

The SAS Stored Process Web Application provides a run-time or end-user
environment for stored process reports. Users can navigate to a stored process
report, specify it by path, or find it by searching and then display the contents of the
stored process report. When a request is made for a stored process report, the
latest output is returned or new stored process report output is generated. The
stored process report is displayed by the SAS Package Viewer. Controls are
provided to force a stored process report refresh (if this is allowed by the permission
settings) or to view prior generations of the stored process report (if there are any
available). The refresh method forces the creation of a new package regardless of
whether the existing package has expired. You can also purge all cached output, or
purge a specified package generation.

Creating and Managing Stored Process
Reports

The New Stored Process Report wizard in SAS Management Console can be used
to create new stored process reports, or you can use the Stored Process Report
Properties dialog box in SAS Management Console to modify existing stored
process reports. You can specify and manage the following information for stored
process reports:

Folder
specifies the metadata location of the stored process report. The folders are
defined in metadata and do not correspond to any physical location. The folder
hierarchies that are used for stored process reports can also hold other objects
such as SAS reports, information maps, and administrative metadata. You can
create and modify folders using SAS Management Console.

Name
specifies the stored process report name, which acts as both a display label and
as part of the URI for the stored process report.

Description
specifies an optional text description of the stored process report.

Keywords
specifies an optional list of keywords to associate with the stored process report.
Keywords are arbitrary text strings that are typically used for searching or to
indicate specific capabilities.

Responsibilities
specifies one or more users who are responsible for the stored process report.
This information is optional.

Stored process
specifies the stored process that is to be used to run the stored process report.

Prompt values
enables you to provide values for the prompts for the selected stored process.

76 Chapter 6 / Composing Stored Process Reports

Maximum retained generations
specifies the number of generations of output to save for the stored process
report. By default, stored process reports keep only a single, current result
package. Multiple generations can be enabled, which allows old result packages
to be kept subject to the multiple generation policy. Multiple generation policy is
set by a generation count limit and a generation age limit. For example, a stored
process report can be set to keep packages that are no more than one month
old, but with a limit of no more than six packages. Multiple generation support is
optional for stored process report clients. A client might choose to show only the
most recent generation or might allow the user to choose previous generations
of the result package. Each package has the following attributes available to the
client:

n Generation (an integer from 1 to n, incremented for each new package)

n Timestamp (creation time)

n Package URL User (user that generated the package)

n Execution time for the stored process

An API method is provided to delete specific packages.

Expiration policy
specifies how often and when output generations expire for the stored process
report. New output is not automatically generated. This setting determines when
a result package expires. If a client accesses a stored process report before it
expires, then the cached stored process results are displayed in the client. If a
client accesses a stored process report after it has expired, then the stored
process is re-executed and a new output generation is created for the stored
process report. Sample expiration policies might be:

n Never

n Every day at 23:30

n Every weekday at 00:00

n Every Tuesday and Thursday at 12:00

n Last day of every month at 00:00

n Every April 15th at 23:59

Authorization
specifies access controls for the stored process report.

You cannot specify authorization information from the New Stored Process
Report wizard. To specify authorization information, you must open the Stored
Process Report Properties dialog box for an existing stored process report.

Creating and Managing Stored Process Reports 77

78 Chapter 6 / Composing Stored Process Reports

7
Building a Web Application with
SAS Stored Processes

Overview . 80
Overview of Stored Process Web Applications . 80
How the SAS Stored Process Web Application Works . 81
SAS Stored Process Web Application Samples . 82

Configuring the SAS Stored Process Web Application . 83
Configuration Files . 83
Custom Responses . 85
Initialization Parameters . 85
Web Application Properties . 88

Specifying Web Application Input . 93
Overview of Web Application Input . 93
Specifying Input Parameters in a URL . 94
Specifying Name/Value Pairs in an HTML Form . 95
Specifying Custom Input Forms . 95
Specifying Prompt Pages . 97

Uploading Files . 97
Overview of Uploading Files . 97
Reserved Macro Variables . 98
Examples of How to Upload Files . 99
Examples of How to Use Uploaded Files . 104

Authentication in the SAS Stored Process Web Application 107
Logon Manager and Basic Authentication . 107
Anonymous Access . 108
Other Authentication Options . 109

Using the SAS Stored Process Web Application Pages . 110
Welcome Page . 110
Tree View . 111
Summary Pages . 112
Custom Input Form . 115
Prompt Page . 116
Execution Options . 118
Search Page . 118

79

XML Output . 120

Using HTTP Headers . 120
Overview of HTTP Headers in Stored Processes . 120
Commonly Used Headers . 121
Content-type . 121
Expires . 122
Location . 123
Pragma . 124
Set-Cookie . 124
Status-Code . 125

Embedding Graphics . 125
Embedding Graphics in Web Pages . 125
Generating Direct Graphic Output . 127

Chaining Stored Processes . 129
Why Chain Stored Processes? . 129
Passing Data through Form Fields or URL Parameters . 129
Passing Data through the DATA Step . 133
Passing Data through Cookies . 134
Passing Data through Sessions . 134

Using Sessions in a Sample Web Application . 134
Overview of the Sample Web Application . 134
Sample Data . 135
Main Aisle Stored Process . 135
Aisles Stored Process . 137
Add Item Stored Process . 138
Shopping Cart Stored Process . 139
Logout Stored Process . 141

Error Handling . 144

Debugging in the SAS Stored Process Web Application . 145
Testing the SAS Stored Process Web Application . 145
List of Valid Debugging Keywords . 145
Setting the Default Value of _DEBUG . 146
Enabling Logging . 146
Character Encoding . 147

Overview

Overview of Stored Process Web Applications
Stored processes are frequently used in web-based applications. While almost any
stored process can be executed through a web interface, the typical web application
design might require special techniques. This chapter documents special issues that
you might encounter when building a web application.

80 Chapter 7 / Building a Web Application with SAS Stored Processes

Web applications are typically implemented by streaming output stored processes.
Streaming output stored processes deliver their output through the _WEBOUT
fileref. You can write directly to the _WEBOUT fileref by using PUT statements, or
you can use the Output Delivery System (ODS) to generate output. The example
code throughout this chapter demonstrates both approaches. The workspace server
is not an appropriate host for many web applications.

Web applications can be implemented using the SAS Stored Process Web
Application, the Stored Process Service application programming interface (API), or
a combination of both. The SAS Stored Process Web Application is a Java middle-
tier application that executes stored processes on behalf of a web client. Only SAS
and HTML programming skills are required; no Java programming is required. Most
of the examples in the remainder of this chapter assume the use of the SAS Stored
Process Web Application. The Stored Process Service API enables the Java
developer to embed stored processes within a Java web application.

How the SAS Stored Process Web Application
Works

The SAS Stored Process Web Application is a Java web application that can
execute stored processes and return results to a web browser. The SAS Stored
Process Web Application is similar to the SAS/IntrNet Application Broker, and it has
the same general syntax and debugging options. The SAS Stored Process Web
Application is included with the SAS Web Infrastructure Platform, which is a
component of SAS Integration Technologies.

Request processing for the SAS Stored Process Web Application is similar to
SAS/IntrNet Application Dispatcher request processing. The following steps
describe how the SAS Stored Process Web Application processes a request:

1 Users enter information in an HTML form by using their web browser and then
submitting it. The information is passed to the web server, which invokes the first
component, the SAS Stored Process Web Application.

2 The SAS Stored Process Web Application accepts data from the web server and
contacts the SAS Metadata Server for user authentication and retrieval of stored
process information.

3 The stored process data is then sent by the SAS Stored Process Web
Application to a stored process server through the object spawner.

4 The stored process server invokes a SAS program that processes the
information.

5 The results of the SAS program are sent back through the web application and
web server to the web browser of the user.

The following diagram illustrates this process:

Overview 81

SAS Stored Process Web Application Samples
The SAS Stored Process Web Application comes installed with a sample Welcome
page and a set of sample stored processes. These samples illustrate various
features that are available with stored processes. The Welcome page searches for
the stored processes and displays them in a table. The Welcome page and sample
custom input forms have been localized.

You can find the SAS source for the samples is in the SAS installation directory,
which might look like the following path: /SAS/SASFoundation/9.4/inttech/
sample

The sample custom input forms are located in the SAS Stored Process Web
Application installation directory, which might look like the following path: <SASHOME>
\Config\Lev1\Web\WebAppServer\SASServer1_1\sas_webapps
\sas.storedprocess.war\input\Samples

The samples are registered in metadata at the following path: /Products/SAS
Intelligence Platform/Samples/

82 Chapter 7 / Building a Web Application with SAS Stored Processes

Configuring the SAS Stored Process
Web Application

Configuration Files
The SAS Stored Process Web Application can be customized for your site through
various configuration files and servlet initialization parameters. The following table
describes the external files that are read by the SAS Stored Process Web
Application.

Table 7.1 Configuration Files

File Description

application_config.xml Contains user information for the SAS
Metadata Repository and is delivered in
the sas.storedprocess.war file.

banner.jsp Is used to generate the top banner in the
SAS Stored Process Web Application
pages. This file is located in the /
SASStoredProcess/jsp directory and can
be altered or replaced if you want to
customize the banner.

Params.config Contains stored process input parameters
that are set before any client parameters
are processed. The parameters are
defined in the form name=value on a
separate line with a '#' character in
column one to indicate a comment.
Continuation lines can be specified with a
'\' character at the end of a line. For more
information about properties that can be
substituted into input parameters in the
Params.config file, see “Web Application
Properties” on page 88. Parameters
defined in the Params.config file cannot
be overridden.

Resources.properties Contains name/value pairs for locale-
defined output strings. This file is
delivered in the

Configuring the SAS Stored Process Web Application 83

File Description

sas.storedprocess.webapp.jar file and is
usually not altered.

search.jsp Is used to search the SAS Stored
Process Web Application for stored
processes and stored process reports.

web.xml Contains servlet mappings and
initialization parameters. This file is the
web application configuration file and is
delivered in the sas.storedprocess.war
file.

Welcome.jsp Specifies an optional page that is
displayed when the SAS Stored Process
Web Application is invoked with no
parameters.

The SAS Stored Process Web Application session contains values that might be
useful to a JSP (including custom input forms) that is installed in the SAS Stored
Process Web Application directory tree. These values are obtained using the
following method:

session.getAttribute("parameter_name")

For parameter-name, specify one of the following parameters:

Banner_Locale returns the current user locale.

Banner_LogoffURL returns current URL that is used for logging out.

Banner_Theme returns the current theme.

Banner_TimeoutURL returns the current URL that is used for time-outs.

Banner_Title returns the current banner title.

sas.framework.user.name returns the login user name (for example, SAS Demo
User).

sas.framework.userid returns the login user ID (for example, sasdemo).

saspfs_sessionid returns the security session ID.

SASStoredProcessURI returns the servlet URI (for example, /
SASStoredProcess/do).

sp_counter returns the number of times the HTTP session has
been accessed.

sp_sessionContext returns the local SessionContextInterface. Use
sp_sessionContext.getUserContext() to get the
current UserContextInterface.

84 Chapter 7 / Building a Web Application with SAS Stored Processes

Custom Responses
You can also customize responses for the SAS Stored Process Web Application by
creating JSP files that are described in the following table. You must store the JSP
files in the /SASStoredProcess/jsp/response/ directory so that the web
application can forward to the corresponding file.

Table 7.2 Custom Responses

File Description

Background.jsp Specifies a page that is displayed when a
stored process has been submitted for
background processing.

InvalidSession.jsp Specifies a page that is displayed when
an invalid or expired session ID is sent.
This file is used only with _REPLAY
sessions.

NotFound.jsp Specifies a page that is displayed when
the stored process cannot be located.

Initialization Parameters
The following table describes the initialization parameters that are available to the
SAS Stored Process Web Application. Initialization parameters are values that are
set when the SAS Stored Process Web Application is started. These parameters
control various web application processing options. Initialization parameters are
defined in the SAS Stored Process Web Application configuration metadata. Values
can be added or changed using the Configuration Manager in SAS Management
Console. Expand the Configuration Manager group on the Plug-ins tab in SAS
Management Console, and then expand the SAS Application Infrastructure node.
Right-click the Stored Process Web App 9.4 node and select Properties. In the
Properties dialog box, click the Advanced tab and then add or edit the initialization
parameters.

Note: The web application server must be restarted for parameter changes to take
effect.

Configuring the SAS Stored Process Web Application 85

Table 7.3 Initialization Parameters

Initialization Parameter Description

ActionMask Specifies the _ACTION values that users
can set. The default is to allow all
keywords. Valid names can be specified
as a comma-separated list.

AllowBasicAuthentication Enables the SAS Stored Process Web
Application to bypass the Logon Manager
and to handle user verification through
the
http://yourserver.com:8080/SASStoredProcess/do1

URL if the AllowBasicAuthentication
parameter is set to true.

AllowEncodedPassword Allows encoded passwords to be passed
in via the _password parameter if the
AllowEncodedPassword parameter is set
to true.

AllowGuest Enables a guest user to run stored
processes without logging in if this
parameter is set to true.

Note: App.AllowGuest must also be set
to true, or GuestUsername and
GuestPassword must be set.

App.AllowGuest Enables an anonymous web user to run
stored processes without logging in if this
parameter is set to true. This parameter
also causes an additional Guest option to
be added to the sign-in page.

Note: AllowGuest must also be set to
true.

App.PublicIdAllowed Allows public IDs in the SAS Stored
Process Web Application if this parameter
is set to true.

BannerRows Specifies the number of rows sent in the
tag for the banner frame. (For
_ACTION=INDEX, three HTML frames
are created with the top frame being the
banner frame.) By default, the size of the
banner frame is dynamically adjusted to
the size of the displayed banner.

Debug Specifies default _DEBUG values.

DebugMask Specifies the _DEBUG values that users
can set. The default is to allow all

86 Chapter 7 / Building a Web Application with SAS Stored Processes

Initialization Parameter Description

keywords. Valid names can be specified
as a comma-separated list.

GuestUsername Specifies the user name to use when
accessing the SAS Stored Process Web
Application as /guest.

GuestPassword Specifies the password to use when
accessing the SAS Stored Process Web
Application as /guest.

InternalURL Specifies a URL for the SAS Stored
Process Web Application to use to
retrieve resource files. This is useful
when the external host or port has been
denied access to the SAS Stored Process
Web Application. The value should be in
the form http://xxx.yyy.com:8080.
Starting with SAS 9.4M2, this initialization
parameter is no longer needed because
the SAS Stored Process Web Application
accesses resource files directly rather
than through a URL.

ParamsFile Specifies the file that contains the preset
input parameters. This value is a fully
expanded file specification. The default
preset filename is Params.config in the
SAS Stored Process Web Application
root context directory.

RTL.SupportedLocales Specifies a comma-delimited list of
locales that should be displayed right to
left. Use this initialization parameter to
enable the SAS Stored Process Web
Application to display languages from
right to left. For SAS 9.4, this is supported
only by the SAS Stored Process Web
Application prompt page.

SessionTimeout Specifies the number of minutes that
elapse before a servlet session expires.
The default session time-out varies by
application server (typically 30-60
minutes). After the session expires, the
user is required to log on again. Any data
that was entered on the prompt page
needs to be reentered.

ShowLogButton Disables the Show SAS log button from
being displayed on program errors (if this
parameter is set to false).

Configuring the SAS Stored Process Web Application 87

Initialization Parameter Description

UploadDirectory Specifies a temporary directory for
caching files when the file size exceeds
32768 bytes. The default directory is
java.io.tmpdir.

UploadMaxSize Specifies the maximum file size in bytes
that can be uploaded.

ValidatePromptValues Forces constraint checking, static list
validation, or dynamic list validation on a
stored process, if the
ValidatePromptValues parameter is set to
true. By default, this parameter is set to
false.

WelcomePage Specifies a page to display if no
parameters are entered in the URL. If the
value that you specify starts with a slash
(/), then the Welcome page is relative to
the web application root context (for
example, /jsp/Welcome.jsp) and the
web browser is forwarded to that page.
Otherwise, a redirect command is sent to
the web browser for the specified page.

The SAS Stored Process Web
Application uses the following sequence
to determine what is displayed when the
user logs in:

1 Use the value for _WELCOME, if this
value has been set.

2 Use the value of the WelcomePage
initialization parameter, if this value
has been set.

3 Check for a Welcome.jsp file in
the /jsp directory.

4 Display the SAS Stored Process Web
Application version and build number.

Web Application Properties
Various reserved values, or properties, are available to be passed as input
parameters to stored processes that are executed by the SAS Stored Process Web
Application. To pass a property to every stored process that is executed by the SAS
Stored Process Web Application, add a line of the form name=$reserved_name to
the Params.config file. For example, to add request cookie information as an input
parameter, add the following line to Params.config:

88 Chapter 7 / Building a Web Application with SAS Stored Processes

_HTCOOK=$servlet.cookies

The input parameter _HTCOOK is created, and it contains the HTTP header cookie
data. The _HTCOOK parameter is added to the input parameters for the stored
process.

Fixed data values can also be passed by using the form name=string. For example,
the following line sets the parameter MYPARM to the fixed string Hello:

MYPARM=Hello

Note: Any unresolved values can result in the corresponding parameter being set
to a zero-length string.

Table 7.4 Properties for Web Applications

Reserved Name
Recommended SAS
Variable Name Description

servlet.auth.type _AUTHTYP Specifies the name of the
authentication scheme that
is used to protect the SAS
Stored Process Web
Application (for example,
BASIC or SSL, or null if
the SAS Stored Process
Web Application was not
protected).

servlet.character.encoding Specifies the name of the
character encoding that is
used in the body of the
request.

servlet.content.length Specifies the length, in
bytes, of the request body
and is made available by
the data source. If the
length is not known, the
value is –1.

servlet.content.type Specifies the MIME type of
the body of the request. If
the type is not known, the
value is null.

servlet.context.path Specifies the portion of the
request URL that indicates
the context of the request.

servlet.cookies _HTCOOK Specifies all of the cookie
strings that the client sent
with this request.

Configuring the SAS Stored Process Web Application 89

Reserved Name
Recommended SAS
Variable Name Description

servlet.header Specifies the HTTP
request header as it was
received by the SAS
Stored Process Web
Application.

servlet.header.accept _HTACPT Specifies the MIME types
that are accepted by the
stored process client.

servlet.header.referer _HTREFER Specifies the address of
the referring page.

servlet.header.user-agent _HTUA Specifies the name of the
user agent.

servlet.header.<name> Specifies a particular
HTTP request header line
as it was received by the
SAS Stored Process Web
Application, where
<name> is the header
keyword name.

servlet.info Specifies any information
about the SAS Stored
Process Web Application,
such as author, version,
and copyright.

servlet.jsessionid Specifies the Java servlet
session ID.

servlet.locale Specifies the preferred
locale in which the client
accepts content, based on
the Accept-Language
header.

servlet.method _REQMETH Specifies the name of the
HTTP method with which
this request was made (for
example, GET, POST, or
PUT).

servlet.name Specifies the name of this
SAS Stored Process Web
Application instance.

servlet.path Specifies the part of the
request URL that calls the

90 Chapter 7 / Building a Web Application with SAS Stored Processes

Reserved Name
Recommended SAS
Variable Name Description

SAS Stored Process Web
Application.

servlet.path.info Specifies any extra path
information that is
associated with the URL
that the client sent when it
made this request.

servlet.path.translated Specifies any extra path
information after the SAS
Stored Process Web
Application name but
before the query string,
and translates this
information to a real path.

servlet.protocol _SRVPROT Specifies the name and
version of the protocol that
the request uses in the
form protocol/
majorVersion.minorVersion
(for example, HTTP/1.1).

servlet.query.string _QRYSTR Specifies the query string
that is contained in the
request URL after the
path.

servlet.remote.addr _RMTADDR Specifies the Internet
Protocol (IP) address of
the client that sent the
request.

servlet.remote.host _RMTHOST Specifies the fully qualified
name of the client that sent
the request, or specifies
the IP address of the client
if the name cannot be
determined.

servlet.remote.user _RMTUSER Specifies the login ID of
the user that is making this
request if the user has
been authenticated. If the
user has not been
authenticated, the value is
null.

Configuring the SAS Stored Process Web Application 91

Reserved Name
Recommended SAS
Variable Name Description

servlet.request.inputencodi
ng

_REQENCODING Specifies the servlet input
encoding. The default
encoding is UTF-8.

servlet.request.uri _URL Specifies the part of this
request's URL from the
protocol name up to the
query string in the first line
of the HTTP request.

servlet.root Specifies the SAS Stored
Process Web Application
root context directory.

servlet.scheme Specifies the name of the
scheme that was used to
make this request (for
example, HTTP, HTTPS,
or FTP).

servlet.secure Returns true or false
indicating whether this
request was made using a
secure channel, such as
HTTPS.

servlet.server.name _SRVNAME Specifies the host name of
the server that received
the request.

servlet.server.port _SRVPORT Specifies the port number
on which this request was
received.

servlet.server.software _SRVSOFT Specifies the web server
software.

servlet.user.name _username Specifies the value for the
user name that was
obtained from the web
browser authentication.
The symbol _username is
set automatically by the
SAS server.

servlet.version _VERSION Specifies the SAS Stored
Process Web Application
version and build number.

92 Chapter 7 / Building a Web Application with SAS Stored Processes

Numerous system properties (for example, user.name) can be obtained. Setting
_DEBUG to ENV shows all the available values.

Specifying Web Application Input

Overview of Web Application Input
A web application that uses stored processes must have a way of sending input
parameters to the stored processes. Input parameters are typically generated by an
HTML page and passed through the SAS Stored Process Web Application or a
user-written JSP to the stored process. Input parameters can be specified in the
following:

n fields in an HTML form. The user provides the required information and submits
the request. The web browser sends data from the form (including both user-
entered data and hidden fields) to the server. HTML forms are generally used
where user input is required to control the execution of the stored process.

n a hypertext link in an anchor tag. The link URL includes parameter values that
are passed to the server when the user selects the link. Hypertext links are
generally used where the input parameters have fixed values (for example, as
drill-down links in a table or image).

n an inline image or other embedded link in the HTML page. This case also
includes frames within an HTML frameset. In most cases, the web browser
fetches the embedded object when the user loads the HTML page. Fetching the
embedded object can cause input parameters to be passed to a stored process.

n URLs or forms that are created and submitted by JavaScript or a similar scripting
technology in the web browser.

The HTML page that uses these techniques can be a static HTML page or a
dynamic page that is generated on demand by another stored process or by a Java
Server Page (JSP). In all cases, the input parameters must follow the naming
conventions and other basic rules that are described in “Using Input Parameters” on
page 8. Reserved parameter names should be used only as recommended. For
more information, see “Using Reserved Macro Variables” on page 26. Reserved
parameter names should be used only as recommended.

The SAS Stored Process Web Application is set up to use the
SanitizingRequestFilter to check for invalid requests. If an invalid input string (for
example, <script>) is found in input parameters, then a status code 403 is returned
to the web browser. For more information about this filter, see the SAS Intelligence
Platform: Web Application Administration Guide.

All of the previously mentioned techniques for specifying input parameters rely on
URLs or HTML forms. The following sections discuss how parameters are passed in
both cases. These sections assume the use of the SAS Stored Process Web
Application. JSPs generally use similar conventions, but the details are determined
by the author of the JSP.

Specifying Web Application Input 93

Specifying Input Parameters in a URL
You can specify input parameters as a sequence of name/value pairs in a URL by
using the query string syntax. For example, the following URL specifies two name/
value pairs.

http://yourserver/SASStoredProcess/do?
 _program=/WebApps/Sales/Weekly+Report®ion=West

The URL specifies your server, an absolute path to your SAS Stored Process Web
Application, and the query string (following the question mark character). Each
name in the query string is separated from the following value by an equal sign (=).
Multiple name/value pairs are separated by ampersand characters (&). In this
example, _program=/WebApps/Sales/Weekly+Report is the reserved input
parameter that specifies the stored process that is to be executed. The second
name/value pair (region=West) is another input parameter to be passed to the
stored process.

There are special rules for the formatting of name/value pairs in a URL. Special
characters (such as most punctuation characters, including spaces) in a value must
be URL-encoded. Spaces can be encoded as a plus sign (+) or %20. Other
characters are encoded using the %nn convention, where nn is the hexadecimal
representation of the character in the ASCII character set. In the previous example,
the value /WebApps/Sales/Weekly+Report actually identifies the stored process
named "Weekly Report". The space in the name is encoded as a plus sign (+). If
your parameter values contain special characters, then it is important that they are
URL-encoded. Use the URLENCODE DATA step function when creating URLs in a
stored process.

URLs are typically used in an HTML tag attribute, and this might require extra
encoding to be properly interpreted. The ampersand characters that are used in the
URL query string can cause the web browser to interpret them as HTML markup.
The parameter ®ion=West is interpreted as ®ion=West in some web
browsers. Use HTML encoding to avoid this problem. The following example shows
the correct HTML code:

 <A HREF="http://yourserver/SASStoredProcess/do?
_program=/WebApps/Sales/Weekly+Report&region=West">

The HTMLENCODE DATA step function can be used to encode the URL in a stored
process. If we assume that the variable myurl contains a URL with various input
parameters, then the following code creates an anchor tag in the variable atag that
is properly encoded:

 atag = '<A HREF="' || htmlencode(myurl,
 'lt gt amp quot') || '">';

Note that some web browsers and web servers might impose a limit on the total
length of a URL. URLs with many parameter values that exceed this limit can be
truncated without warning, which results in incomplete or inconsistent input data for
your stored process. URL length limits are not well documented and might require
experimentation with your particular configuration.

For information about specifying multiple values for an input parameter, see “Input
Parameters with Multiple Values” on page 12.

94 Chapter 7 / Building a Web Application with SAS Stored Processes

Specifying Name/Value Pairs in an HTML Form
HTML forms provide the most versatile mechanism for sending input parameters to
a stored process. A form definition begins with the <FORM> tag and ends with the
</FORM> tag. Between these two tags, other HTML tags define the various
components of the form, including labels, input fields, selection lists, push buttons,
and more. Here are some issues that are related to stored process input parameters
in HTML forms:

n The ACTION attribute of the <FORM> tag generally points to the SAS Stored
Process Web Application or a JSP that executes the stored process. The
METHOD attribute of the <FORM> tag can be set to GET or POST.

n The GET method causes the web browser to construct a URL from all of the field
values in the form. The URL is exactly like the URLs that were discussed in the
previous section. The GET method enables the user to bookmark a specific
stored process execution, including all input parameters, but the total length of
all parameters might be limited. Web servers typically log all requested URLs,
and this method causes all input parameters to be included in the web server
log, which can be a possible security issue.

n The POST method uses a special post protocol for sending the parameters to
the server. The POST method allows an unlimited number of input parameters
and usually hides them from the web server log, but this method does not allow
the execution to be bookmarked in a web browser.

Hidden fields are name/value pairs in a form that do not appear as buttons,
selection lists, or other visible fields on the HTML page. Hidden fields are frequently
used to hold fixed input parameters that do not require user input. For example, the
following code specifies the stored process to be executed by this form.

 <INPUT TYPE="hidden"
 NAME="_program" VALUE="/WebApps/Sales/Weekly Report">

The space in the stored process name is not encoded as in the previous URL
section. Values in hidden fields and other field types should not be URL-encoded,
but might still need to be HTML-encoded if they contain HTML syntax characters
such as a less than sign (<), a greater than sign (>), an ampersand (&), or quotation
marks (").

Specifying Custom Input Forms
The SAS Stored Process Web Application looks for a custom input form if you add
the parameter _ACTION=FORM to the web application URL. You can use the
_FORM variable with _ACTION=FORM to specify the location of a custom input
form JSP file for a stored process. If the value starts with a slash (/), then the JSP
file is assumed to be located relative to the SAS Stored Process Web Application
root. Otherwise, it is assumed to be a complete URL and a redirect is performed to
that value.

The stored process samples have _FORM defined in the source code. The _FORM
parameter is defined in the stored process metadata.

Specifying Web Application Input 95

For example, the Shoe Sales by Region sample has _FORM defined as follows:

_FORM=/input/samples/stpods1/stpods1.jsp

The Shoe Sales by Region sample stored process can be accessed with the
following code:

http://yourserver/SASStoredProcess/do?
 _program=/Samples/Stored+Processes/
 Sample:+Shoe+Sales+by+Region&_action=form

Your web browser is forwarded as shown here:

http://yourserver/SASStoredProcess
 /input/samples/stpods1/stpods1.jsp?
 _program=/Samples/Stored+Processes/
 Sample:+Shoe+Sales+by+Region

If _FORM is not specified, then custom input forms are stored as JSPs under the
input folder in the SASStoredProcess directory.

Note: If a custom input form with zero length is found, then the form is skipped and
the stored process executes immediately.

In order to create the input form path and name for the case when _FORM is not
specified, all names in the stored process path (both folders and the stored process
itself in the _PROGRAM parameter) are converted to an equivalent file system path
for a JSP file. The following special characters in a folder or stored process name
are converted to underscore characters: ' " ;: * ? < >\ | tabs and blank spaces.

For example:

 /Samples/John's Test Area/Test: Hello World (English) V1.0

would be converted to:

<webapp-home>/input/Samples/John_s_Test_Area/
 Test__Hello_World_(English)_V1.0.jsp

For more information about the SAS Stored Process Web Application and custom
input forms, including a sample form, see “Custom Input Form” on page 115.

Custom input forms are provided with most of the sample stored processes that are
included in the SAS Web Infrastructure Platform. Custom input form JSP files can
be deployed from the SAS Stored Process Web Application configuration area.
Consider a stored process with the following name and location: /Reports/East
Region/Sales Summary 2005 This stored process has a custom input form with the
filename Sales_Summary_2005.jsp. It is maintained and deployed from the
following location: <SASHOME>\Config\Lev1\Web\WebAppServer
\SASServer1_1\sas_webapps\sas.storedprocess.war\input\Reports
\East_Region

Custom input forms can be deployed as part of the sas.storedprocess.war file. The
sas.storedprocess.war file is built and deployed by the SAS Web Infrastructure
Platform redeployment process.

Note: The SAS Stored Process Web Application is delivered in an EAR file and can
be run directly from the EAR file or from the exploded directory. For more
information about how to explode the EAR file, see the SAS Intelligence Platform:
Web Application Administration Guide.

96 Chapter 7 / Building a Web Application with SAS Stored Processes

As an alternative to creating a separate JSP file for your custom input form, you can
use HTML following the CARDS4 statement in a DATA step.See “Passing Data
through the DATA Step” on page 133 for more information.

Specifying Prompt Pages
Prompt pages provide a parameter input page for stored processes that do not have
custom input forms. The prompt page is accessed by adding the parameter
_ACTION=PROPERTIES to the web application URL. Parameters must be defined
in the stored process metadata in order for them to be visible in a prompt page. For
more information about the SAS Stored Process Web Application and prompt
pages, see “Using the SAS Stored Process Web Application Pages” on page 110.

If you are unsure whether a stored process has a custom input form, you can
specify _ACTION=FORM,PROPERTIES,EXECUTE on the web application URL.
This is the default action for a stored process accessed from the SAS Information
Delivery Portal. This action causes the web application to do the following:

n display the custom input form if it exists

n display the prompt page if the input form does not exist and the stored process
has prompts defined

n execute the stored process if there is no custom input form and there are no
prompts defined

Note: Starting with SAS 9.4M8, SAS Information Delivery Portal and SAS BI
Portlets are not available from SAS. For more information, see Unconfiguring and
Uninstalling Retired Products in SAS Guide to Software Updates and Product
Changes.

Uploading Files

Overview of Uploading Files
You can use the SAS Stored Process Web Application to upload one or more files to
your SAS Stored Process Server or SAS Workspace Server. The upload process is
initiated by a custom input form that contains an INPUT tag with the attribute TYPE
set to file:

<input type="file"
name="myfile">

This tag enables you to specify the file that you want to upload. For more
information, see “Specifying Custom Input Forms” on page 95. After the form data is
submitted, the file that you chose and any other name/value pairs that are contained

Uploading Files 97

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=whatsdiff&docsetTarget=p0rnmms86wf7b0n1682c6c54kl7x.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=whatsdiff&docsetTarget=p0rnmms86wf7b0n1682c6c54kl7x.htm

in the custom input form are sent to the server. Your stored process can then use
both the name/value pairs and the file that was uploaded.

Reserved Macro Variables
The reserved SAS macro variables that are associated with uploading files all start
with _WEBIN_.

_WEBIN_CONTENT_LENGTH
specifies the length, in bytes, of the file that was uploaded.

_WEBIN_CONTENT_TYPE
specifies the content type that is associated with the file.

_WEBIN_FILE_COUNT
specifies the number of files that were uploaded. If no files were uploaded, then
the value of this variable is set to zero.

_WEBIN_FILEEXT
specifies the extension of the file that was uploaded.

_WEBIN_FILENAME
specifies the original location of the file.

_WEBIN_FILEREF
specifies the SAS fileref that is automatically assigned to the uploaded file. You
can use this fileref to access the file. The uploaded file is stored in a temporary
location on the stored process server or workspace server, and is deleted when
the request is completed. Be sure to copy the file to a permanent location if you
need to access it at a later date.

_WEBIN_NAME
specifies the value that is specified in the NAME attribute of the INPUT tag.

_WEBIN_SASNAME
specifies a unique name for the SAS table, view, or catalog that was uploaded. A
value is set for this macro variable only if a SAS table, view, or catalog was
uploaded. All SAS data types are stored in the Work library. The type of SAS file
that was uploaded is stored in the _WEBIN_SASTYPE macro variable. See also
_WEBIN_SASNAME_ORI.

_WEBIN_SASNAME_ORI
specifies the original name of the SAS table, view, or catalog that was uploaded.
If a SAS table named mydata.sas7bdat was uploaded, then
_WEBIN_SASNAME_ORI contains the value mydata. A value is set for this
macro variable only if a SAS table, view, or catalog that was uploaded. All SAS
data types are stored in the Work library. The type of SAS file that was uploaded
is stored in the _WEBIN_SASTYPE macro variable. See also
_WEBIN_SASNAME.

_WEBIN_SASTYPE
specifies the type of SAS file that was uploaded: DATA for SAS tables, VIEW for
SAS views, and CATALOG for SAS catalogs. A value is set for this macro
variable only if a SAS table, view, or catalog was uploaded. The name of the
uploaded file is stored in the _WEBIN_SASNAME macro variable.

_WEBIN_STREAM
specifies the name of the data source that was used to upload the file.

98 Chapter 7 / Building a Web Application with SAS Stored Processes

_WEBIN_STREAM_COUNT
specifies the number of files that were uploaded. If no files were uploaded, then
the value of this variable is set to zero.

If you are uploading more than one file, then unique macro variables are created for
each file. This applies to all of the previous reserved macro variables except
_WEBIN_FILE_COUNT and _WEBIN_STREAM_COUNT.

Note: For z/OS, the SAS server must be invoked with the FILESYSTEM=HFS
option in order to be able to upload SAS file types.

Examples of How to Upload Files

Example 1: Uploading a Single File
The following figure shows a custom input form that can be used to upload a single
file to the stored process server:

Here is an HTML example for uploading a single file:

<form action="StoredProcessWebApplicationURL" method="post"
 enctype="multipart/form-data">
<input type="hidden" name="_program" value="/Path/StoredProcessName">
<table border="0" cellpadding="5">
 <tr>
 <th>Choose a file to upload:</th>
 <td><input type="file" name="myfile"></td>
 </tr>
 <tr>
 <td colspan="2" align="center"><input type="submit" value="OK"></td>
 </tr>
</table>
</form>

In the preceding HTML example, you must replace
"StoredProcessWebApplicationURL" with the path to the SAS Stored Process Web
Application. This path is usually http://YourServer:8080/SASStoredProcess/do,
where YourServer corresponds to the domain name of your server. Similarly, you
need to specify the path and name of the stored process that you want to execute
after the file has been uploaded. You should specify the exact values that are shown
for the METHOD and ENCTYPE attributes of the FORM tag.

Uploading Files 99

The INPUT tag in the preceding HTML example is used to create the Browse
button and text entry field in the preceding figure. The appearance of this control
might be different depending on which web browser you use, but the functionality
should be the same. Clicking the Browse button enables you to navigate to the file
that you want to upload. You can choose any file that you have access to. This
example uses the file readme.txt, which resides in the Windows directory C:\temp.

After you select a file and click OK, all form data is sent to the SAS Stored Process
Web Application, which forwards the data to the server. As a result, the following
SAS macro variables are created:

Table 7.5 SAS Macro Variables

Variable Name Value Description

_WEBIN_CONTENT_LENGTH 1465 Specifies the size of the
file that was uploaded in
bytes (supplied
automatically by the web
browser).

_WEBIN_CONTENT_TYPE text/plain Specifies the content type
that corresponds to the file
that was uploaded
(supplied automatically by
the web browser).

_WEBIN_FILE_COUNT 1 Specifies the number of
files that were uploaded.

_WEBIN_FILEEXT txt Specifies the extension of
the file that was uploaded.

_WEBIN_FILENAME C:\temp\README.txt Specifies the name and
original location of the file
that was uploaded.

_WEBIN_FILEREF #LN00197 Specifies the SAS fileref
that you can use to
access the uploaded file.
This fileref is assigned for
you by the SAS server.

_WEBIN_NAME myfile Specifies the value that
corresponds to the NAME
attribute of the INPUT tag.

Your stored process has access to the uploaded file through the fileref that is stored
in the value of the _WEBIN_FILEREF macro variable. The following code example
returns the uploaded file to the client:

 * Set the Content-type header;
 %let RV = %sysfunc(stpsrv_header(Content-type, &_WEBIN_CONTENT_TYPE));

 * Write the file back to the web browser;

100 Chapter 7 / Building a Web Application with SAS Stored Processes

 data _null_;
 length data $1;

 infile &_WEBIN_FILEREF recfm=n;
 file _webout recfm=n;
 input data $char1. @@;
 put data $char1. @@;
 run;

The preceding code example shows how to use the _WEBIN_CONTENT_TYPE
macro variable to set the content-type header. This code also shows how to use the
_WEBIN_FILEREF macro variable to access the uploaded file.

Example 2: Uploading Multiple Files
The following figure shows a custom input form that can be used to upload multiple
files to the stored process server:

Here is an HTML example for uploading multiple files:

<form action="StoredProcessWebApplicationURL" method="post"
 enctype="multipart/form-data">
<input type="hidden" name="_program" value="/Path/StoredProcessName">
<table border="0" cellpadding="5">
 <tr>
 <th>Choose a file to upload:</th>
 <td><input type="file" name="firstfile"></td>
 </tr>
 <tr>
 <th>Choose another file to upload:</th>
 <td><input type="file" name="secondfile"></td>
 </tr>
 <tr>
 <td colspan="2" align="center"><input type="submit" value="OK"></td>
 </tr>
</table>
</form>

Example 2 uses the files readme.txt and winter.jpg, which reside in the Windows
directory C:\temp. Note that the two input files do not need to be in the same
directory.

After you select a file and click OK, all form data is sent to the SAS Stored Process
Web Application, which forwards the data to the server. As a result, the following
SAS macro variables are created:

Uploading Files 101

Table 7.6 SAS Macro Variables

Variable Name Value Description

_WEBIN_CONTENT_LENGTH 1465 Specifies the size of the first
file that was uploaded in
bytes (supplied
automatically by the web
browser).

_WEBIN_CONTENT_LENGTH0 2 Specifies the number of
files that were uploaded.

_WEBIN_CONTENT_LENGTH1 1465 Specifies the size of the first
file that was uploaded in
bytes (supplied
automatically by the web
browser).

_WEBIN_CONTENT_LENGTH2 5367 Specifies the size of the
second file that was
uploaded in bytes (supplied
automatically by the web
browser).

_WEBIN_CONTENT_TYPE text/plain Specifies the content type
that corresponds to the first
file that was uploaded
(supplied automatically by
the web browser).

_WEBIN_CONTENT_TYPE0 2 Specifies the number of
files that were uploaded.

_WEBIN_CONTENT_TYPE1 text/plain Specifies the content type
that corresponds to the first
file that was uploaded
(supplied automatically by
the web browser).

_WEBIN_CONTENT_TYPE2 image/jpeg Specifies the content type
that corresponds to the
second file that was
uploaded (supplied
automatically by the web
browser).

_WEBIN_FILE_COUNT 2 Specifies the number of
files that were uploaded.

_WEBIN_FILEEXT txt Specifies the extension of
the first file that was
uploaded.

102 Chapter 7 / Building a Web Application with SAS Stored Processes

Variable Name Value Description

_WEBIN_FILEEXT0 2 Specifies the number of
files that were uploaded.

_WEBIN_FILEEXT1 txt Specifies the extension of
the first file that was
uploaded.

_WEBIN_FILEEXT2 jpg Specifies the extension of
the second file that was
uploaded.

_WEBIN_FILENAME C:\temp
\README.txt

Specifies the name and
original location of the first
file that was uploaded.

_WEBIN_FILENAME0 2 Specifies the number of
files that were uploaded.

_WEBIN_FILENAME1 C:\temp
\README.txt

Specifies the name and
original location of the first
file that was uploaded.

_WEBIN_FILENAME2 C:\temp\winter.jpg Specifies the name and
original location of the
second file that was
uploaded.

_WEBIN_FILEREF #LN00014 Specifies the SAS fileref
that you can use to access
the first file that was
uploaded.

_WEBIN_FILEREF0 2 Specifies the number of
files that were uploaded.

_WEBIN_FILEREF1 #LN00014 Specifies the SAS fileref
that you can use to access
the first file that was
uploaded.

_WEBIN_FILEREF2 #LN00016 Specifies the SAS fileref
that you can use to access
the second file that was
uploaded.

_WEBIN_NAME firstfile Specifies the value that
corresponds to the NAME
attribute of the first INPUT
tag.

Uploading Files 103

Variable Name Value Description

_WEBIN_NAME0 2 Specifies the number of
files that were uploaded.

_WEBIN_NAME1 firstfile Specifies the value that
corresponds to the NAME
attribute of the first INPUT
tag.

_WEBIN_NAME2 secondfile Specifies the value that
corresponds to the NAME
attribute of the second
INPUT tag.

Examples of How to Use Uploaded Files

Example 3: Uploading a CSV File to a SAS
Table
After you have uploaded a comma-separated values (CSV) file, you can use the
IMPORT procedure to import the file to a SAS table. The following sample code
shows one way of achieving this:

 %let CSVFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

 proc import datafile="&CSVFILE"
 out=work.mydata
 dbms=csv
 replace;
 getnames=yes;
 run;

 title 'First 10 records of CSV file after importing to a SAS table.';

 %STPBEGIN;
 proc print data=work.mydata(obs=10); run; quit;
 %STPEND;

Because the IMPORT procedure requires a full path to the CSV file, you must first
use the PATHNAME function to get the path to the file. The GETNAMES statement
uses the data in the first row of the CSV file for the SAS column names. For more
information, see the IMPORT procedure in the Base SAS Procedures Guide.

An alternative method is to write a DATA step to import the CSV file. This method
requires only Base SAS. The following code is an example of how to do this:

 data work.mydata;
 infile &_WEBIN_FILEREF dlm=',' dsd;

104 Chapter 7 / Building a Web Application with SAS Stored Processes

 * Your code to read the CSV file;
 run;

Example 4: Uploading an Excel XML
Workbook to Multiple SAS Tables
Starting with Excel XP (Excel 2002), a workbook can be saved as an XML file. This
XML file can be read into SAS using the SAS XML LIBNAME engine and an
XMLMap. Each worksheet in the workbook is imported to a SAS table with the same
name. The column headings in the worksheets are used for the column names in
the SAS tables. The following code is an example of how to do this. Be sure to
include the appropriate directory paths.

 %let XMLFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

 * Include the XLXP2SAS macro;
 %include 'loadxl.sas';
 * Import the workbook into SAS tables;
 %XLXP2SAS(excelfile=&XMLFILE,
 mapfile=excelxp.map);

The %INCLUDE statement makes the XLXP2SAS macro available to SAS. The
%XLXP2SAS macro imports the data from all the worksheets into separate SAS
tables with the help of an XMLMap. For more information, see the paper “Creating
AND Importing Multi-Sheet Excel Workbooks the Easy Way with SAS” at
http://support.sas.com/rnd/papers. Links are available for you to download both the
macro and the XMLMap.

Example 5: Uploading a SAS Table or
View
When a SAS data type (table, view, or catalog) has been uploaded, additional
reserved macro variables are created. For example, the following macro variables
are created if the file C:\temp\djia.sas7bdat has been uploaded:

Table 7.7 SAS Macro Variables

Variable Name Value Description

_WEBIN_SASNAME _B3FF5FCAF39482
D93793AEEF05BB
15F

Specifies a unique name for
the uploaded SAS table, which
is stored in the Work library.

_WEBIN_SASNAME_ORI djia Specifies the original name of
the uploaded SAS table.

_WEBIN_SASTYPE DATA Specifies the type of SAS file
that was uploaded: DATA for a

Uploading Files 105

Variable Name Value Description

SAS table; VIEW for a SAS
view.

To print the SAS table or view that has been uploaded, use the following code:

 title 'First 10 records of uploaded SAS data file.';

 %STPBEGIN;
 proc print data=&_WEBIN_SASNAME(obs=10); run; quit;
 %STPEND;

Example 6: Uploading a SAS Catalog
You can use the following sample code to list the contents of a SAS catalog that has
been uploaded:

 %STPBEGIN;
 proc catalog c=&_WEBIN_SASNAME;
 contents;
 run; quit;
 %STPEND;

Example 7: Uploading a SAS Table, View,
or Catalog and Saving a Permanent Copy
You can use the following sample code to make a permanent copy of a SAS table,
view, or catalog that has been uploaded and to retain the name of the original
uploaded file:

 proc datasets library=YourLibrary;
 copy in=work out=YourLibrary memtype=&_WEBIN_SASTYPE;
 select &_WEBIN_SASNAME;
 run;
 change &_WEBIN_SASNAME=&_WEBIN_SASNAME_ORI;
 run;
 quit;

In the preceding example of SAS code, you must replace YourLibrary with the name
of the SAS library in which you want to store the SAS table, view, or catalog.

106 Chapter 7 / Building a Web Application with SAS Stored Processes

Example 8: Uploading an Excel Workbook
to a SAS Table
You can use the IMPORT procedure to import an Excel workbook file that has been
uploaded to a SAS table. The following sample code shows one way of achieving
this:

 %let XLSFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

 proc import datafile="&XLSFILE"
 out=work.mydata
 dbms=excel
 replace ;
 getnames=yes;
 run; quit;

 title 'First 10 records of Excel workbook after importing to a SAS table.';

 %STPBEGIN;
 proc print data=work.mydata(obs=10); run; quit;
 %STPEND;

Because the IMPORT procedure requires a full path to the Excel workbook, you
must first use the PATHNAME function to get the path to the file. The GETNAMES
statement uses the data in the first row of the workbook for the SAS column names.
For more information, see the IMPORT procedure in the Base SAS Procedures
Guide.

Authentication in the SAS Stored
Process Web Application

Logon Manager and Basic Authentication
Starting with SAS 9.2, the default way for a user to log on to the SAS Stored
Process Web Application is to use the Logon Manager. This is the standard
mechanism used by SAS web products. The user enters credentials in a logon
dialog box. After verifying the user credentials, the Logon Manager forwards to the
URL that was entered for the SAS Stored Process Web Application.

To log on using the same Basic authentication that was used in previous releases of
the SAS Stored Process Web Application, use the following URL:

http://yourserver.com:8080/SASStoredProcess/do1

Authentication in the SAS Stored Process Web Application 107

This URL bypasses the Logon Manager and enables the SAS Stored Process Web
Application to handle the user verification. The SAS Stored Process Web
Application sends an HTTP status 401 to force the web browser to display a logon
dialog box. To enable this capability, the AllowBasicAuthentication configuration
parameter must be set to true. Use the Configuration Manager in SAS Management
Console to set this parameter. Expand the Configuration Manager group on the
Plug-ins tab in SAS Management Console, and then expand the SAS Application
Infrastructure node. Right-click the Stored Process Web App 9.4 node and select
Properties. In the Properties dialog box, click the Advanced tab. Set the
AllowBasicAuthentication configuration parameter to true.

Note: The Login Manager uses a fully expanded host name by default. If you use a
shortened host name, then you are prompted for a user name and password for
every page of the web application.

Anonymous Access
Starting with SAS 9.2, users can run stored processes without having to log on. A
guest user name can be defined to run stored processes under a fixed account. The
guest user name and password are specified in the SAS Stored Process Web
Application initialization parameters.

The default guest account is the anonymous web account, usually named webanon,
that was defined during the system installation. If this account was not created, or if
you want to specify a different account, then the initialization parameters
GuestUsername and GuestPassword are used to define a guest account. The
encoded value of the GuestPassword parameter can be used for the
GuestPassword property value, which can be obtained as follows:

PROC PWENCODE
in=”mypassword”;
run;

To enable guest access, you must perform the following steps to configure the
advanced properties of the SAS Stored Process Web Application:

1 In SAS Management Console, click the Plug-ins tab. Under Application
Management, expand the Configuration Manager group.

2 Expand the SAS Application Infrastructure node.

3 Right-click the Stored Process Web App 9.4 node and select Properties.

4 In the Properties dialog box, click the Advanced tab.

5 Double-click the property value for the AllowGuest property, and change the
value to true in order to grant guest access to the Anonymous Web User.

6 Starting with SAS 9.4M3, you must use one or both of the following options:

n To define a guest account, you can add the GuestUsername and
GuestPassword initialization parameters. To add the GuestUsername and
GuestPassword parameters, click Add and enter the property name and
desired value for each.

108 Chapter 7 / Building a Web Application with SAS Stored Processes

n To enable users to authenticate as the anonymous web user without entering
any credentials, you can set the value of the App.AllowGuest property to
true. This property also causes a Guest option to display on the SAS Logon
Manager sign-in screen.

After you modify the advanced properties for the SAS Stored Process Web
Application in the Configuration Manager, you must restart the web application
server. A URL similar to the following can then be used to access the SAS Stored
Process Web Application by using the guest account:

http://yourserver.com:8080/SASStoredProcess/guest

If the guest account is defined as an internal account, then any requests that use a
workspace server will fail, including prompts that use dynamically generated lists
and prompts that have dependencies.

Other Authentication Options
The values _username and _password can be given as input parameters in the URL
in order to bypass any login dialog box. The password value can be encoded as
shown previously if the initialization parameter AllowEncodedPassword is set to
true.

If a user name is defined on the host server but is not defined in metadata, then the
user is considered a member of the Public group. By default, the Public group does
not have permission to execute stored processes. You can use the Authorization
Manager in SAS Management Console to assign ReadMetadata permission to the
Public group, which enables these users to execute stored processes. For more
information about using the Authorization Manager, see the product help.

To allow public IDs in the SAS Stored Process Web Application, you must perform
the following steps to configure the advanced properties of the SAS Stored Process
Web Application:

1 In SAS Management Console, click the Plug-ins tab. Under Application
Management, expand the Configuration Manager group.

2 Expand the SAS Application Infrastructure node.

3 Right-click the Stored Process Web App 9.4 node and select Properties.

4 In the Properties dialog box, click the Advanced tab.

5 Double-click the property value for the App.PublicIdAllowed property, and
change the value to true.

To allow single system sign-on, you can use web server trusted authentication with
the Logon Manager. To set up your system for trusted authentication see the SAS
Intelligence Platform: Security Administration Guide.

To log off, the variable _ACTION=LOGOFF can be sent to SAS Stored Process
Web Application. This forces the current session to be immediately deleted, and a
logoff screen is displayed.

Authentication in the SAS Stored Process Web Application 109

Using the SAS Stored Process Web
Application Pages

Welcome Page
To execute the SAS Stored Process Web Application, enter the application's URL in
the web browser. Either the default Welcome page or static data is displayed.

Here is an example of a URL for the SAS Stored Process Web Application:

http://yourserver.com:8080/SASStoredProcess/do

This is the default URL. If the SAS Stored Process Web Application is accessed as
http://yourserver:8080/SASStoredProcess, then it defaults to http://yourserver:8080/
SASStoredProcess/do. In this example, if the Welcome.jsp file is installed, then the
Welcome page is displayed. The Welcome page might look like this one:

The Welcome page contains the following links:

110 Chapter 7 / Building a Web Application with SAS Stored Processes

Stored Process Samples
Click this link to display a page of stored process samples that are installed with
the SAS Web Infrastructure Platform.

List Available Stored Processes
Click this link to display a page that contains a tree view of folders, stored
processes, and stored process reports. You can select a stored process (or
stored process report) in the tree view in order to run the stored process. For
more information, see “Tree View” on page 111. If there are no parameters or
input forms, then the stored process executes immediately and the results are
displayed. If there are parameters or input forms, then you are taken to the
custom input form or prompt page.

Search for Stored Processes and Reports
Click this link to search for a stored process or stored process report. You can
search for a string within the name, description, or keywords for a stored process
or stored process report. No wildcards are accepted in the search term. You can
also select one or more of the following columns to display in the search results:
description, keywords, creation date, and modified date. For more information,
see “Search Page” on page 118.

In the preceding example, if the Welcome.jsp file has not been installed, then static
data is displayed. The static data might look like this:

 Stored Process Web Application
 Version 9.4 (Build 499)

Instead of navigating through this interface from the Welcome page, you can also
use the _ACTION and _PROGRAM variables in the URL to open different pages.
For more information, see “Using Reserved Macro Variables” on page 26.

Tree View
You can access the tree view of stored processes by appending the _ACTION
variable with a value of INDEX (_ACTION=INDEX) to the SAS Stored Process Web
Application URL. On the left, the tree view displays the same list of folders, stored
processes, and stored process reports that you see when you click List Available
Stored Processes on the Welcome page. When you click a stored process in the
tree view, the default action is to execute that stored process.

Note: Any stored process that has the Hide from user check box selected in SAS
Management Console does not show up in the tree view.

You can use the _PATH variable with _ACTION=INDEX to control what level the
tree view begins with. For example, if you specify _PATH=/Products/SAS
Intelligence Platform/Samples on the SAS Stored Process Web Application
URL, then the Samples folder is at the top of the tree view.

The keywords properties, form, and execute can be added to the _ACTION
variable to control which page is displayed when you select a stored process as
shown in the following examples:

_ACTION=INDEX,PROPERTIES
displays the prompt page for the stored process. If there are no prompts, then
only the Run button is displayed.

Using the SAS Stored Process Web Application Pages 111

_ACTION=INDEX,FORM,EXECUTE
displays the custom input form (if available). Otherwise, the stored process
executes.

_ACTION=INDEX,FORM,PROPERTIES,EXECUTE
displays the custom input form (if available). If there is no custom input form,
then the prompt page for the stored process is displayed. If there are no
prompts, then the stored process executes.

Summary Pages

Stored Process Summary Page
To display the summary page for a stored process, specify
_ACTION=DATA&_PROGRAM=<stored-process-path> on the SAS Stored Process
Web Application URL. (You can also add _ACTION=INDEX,DATA to the SAS
Stored Process Web Application URL and then select a stored process in order to
display this page.)

The following items are included on this page:

Metadata path
specifies the location of the SAS folder that contains the stored process. You can
use this path as the value for the _PROGRAM variable. For more information,
see “Using Reserved Macro Variables” on page 26.

112 Chapter 7 / Building a Web Application with SAS Stored Processes

Source code location
specifies the source code repository, where the SAS code is located.

Source file
specifies the name of the file that contains the SAS code.

SAS server type
specifies the type of server that is used to run the stored process (either a stored
process server or a workspace server).

Result type
specifies the type of results that the stored process is capable of producing (can
be Stream, Package, both, or neither of these).

Created
specifies the date and time that the stored process metadata was first registered.

Last modified
specifies the date and time that the stored process metadata was last modified.

Keywords
specifies any keywords that are associated with the stored process. These
keywords are part of the stored process metadata.

Description
contains a description of the stored process. This description is part of the stored
process metadata.

To run the stored process, click Run at the bottom of the summary. If there are no
parameters or input forms, then the stored process executes immediately and the
results are displayed. If there are parameters or input forms, then you are taken to
the custom input form or prompt page.

Stored Process Report Summary Page
To display the summary page for a stored process report, specify
_ACTION=DATA&_REPORT=<stored-process-report-path> on the SAS Stored
Process Web Application URL. (You can also add _ACTION=INDEX,DATA to the
SAS Stored Process Web Application URL and then select a stored process report
in order to display this page.)

Using the SAS Stored Process Web Application Pages 113

The following items are included on this page:

Metadata path
specifies the location of the SAS folder that contains the stored process report.
You can use this path as the value for the _REPORT variable. For more
information, see “Using Reserved Macro Variables” on page 26.

Number of reports
specifies the number of stored process report generations that are currently
available.

Maximum retained
specifies the maximum number of stored process report generations that can be
saved at any time.

Created
specifies the date and time that the stored process report was first created.

Last modified
specifies the date and time that the stored process report was last modified.

Keywords
specifies any keywords that are associated with the stored process report.

Description
contains a description of the stored process report.

The bottom of the summary page shows all the generations of the stored process
report that are available, including who created each one and when, and when each
stored process report generation expires. You can click the number of a stored
process report generation in order to view that generation. To run a new stored
process report, click Run at the bottom of the summary.

114 Chapter 7 / Building a Web Application with SAS Stored Processes

To run a stored process report from the URL, the metadata location must be
specified. This can be done using the parameters _PROGRAM=/myfolder/
myreport&_TYPE=report. Alternatively, just the _REPORT parameter can be used,
for example, _REPORT=/myfolder/myreport. This returns the latest stored process
report generation or runs a new one if none are found. To return a specific stored
process report, the parameter _REPORTID=ID can be added to the URL with the ID
of the desired generation of the report. A _REPORTID=0 forces a new stored
process report to be run.

Note: The stored process log is available only when the stored process report is
run to generate new output.

Custom Input Form
If you want the SAS Stored Process Web Application to display a custom input form
for a stored process, then you can use any of the following methods:

n On the Welcome page, click the Stored Process Samples link to display a page
of stored process samples that are installed with the SAS Web Infrastructure
Platform. Each of these samples has a link and a description. Click any of these
links to display the custom input form for that stored process.

n Use the _PROGRAM variable along with _ACTION=FORM in the URL to display
the custom input form for a stored process. For more information, see
“Specifying Custom Input Forms” on page 95.

n Select a stored process from the tree view. If the stored process has a custom
input form, then it is displayed.

A custom input form might look like this:

Using the SAS Stored Process Web Application Pages 115

You can use the custom input form to execute the stored process. In this example,
clicking Display SAS Output generates the following results:

Prompt Page
In order to display the prompt page for a stored process, you can do one of the
following:

n Use the _PROGRAM variable along with _ACTION=PROPERTIES in the URL to
display the prompt page for a stored process. For more information, see
“Specifying Prompt Pages” on page 97.

n Select a stored process from the tree view. If the stored process has parameters
but does not have a custom input form, then the prompt page is displayed.

Note: If a stored process does not have any parameters, then it does not have a
prompt page. If you click a stored process that does not have a prompt page or a
custom input form, then the stored process is immediately executed.

116 Chapter 7 / Building a Web Application with SAS Stored Processes

If you have defined parameters groups, then the groups are shown as items in the
menu on the left side of the prompt page. You can click each group name to display
the parameters that are in that group. A prompt page without groups might look like
this:

This sample prompt page shows an example of a date range type parameter.
Parameters must be defined in the stored process metadata in order for them to be
visible in a prompt page. Parameters are called prompts in SAS Management
Console. The stored process metadata is where the name, label, type, default value,
and any constraints for a prompt are defined. Constraints help define which values
are allowed for a prompt, how many values are allowed, and so on.

The prompt type determines how that parameter is displayed in the prompt page.
You can have any of the following types of prompts in this page:

n Text

n Text range

n Numeric

n Numeric range

n Date

n Date range

n Time

n Time range

n Timestamp

n Timestamp range

n Color

n Data source

Using the SAS Stored Process Web Application Pages 117

n File or directory

n Data library

For more information about how to create prompts and the constraints that can be
specified for each type of prompt, see the Help for prompts in SAS Management
Console. For more information about how to specify values for prompt, and macro
variables that are generated by prompts, see Appendix 3, “Formatting Prompt
Values and Generating Macro Variables from Prompts,” on page 209.

Execution Options
Execution options are delivered as a sample shared prompt group that you can add
to a stored process for use with the prompt page. Execution options are prompts
that enable you to specify the graphic device, ODS destination, ODS style, and
debugging options for a stored process at run time.

To add execution options to a stored process, perform the following steps:

1 Open the Stored Process Properties dialog box for the stored process and click
the Parameters tab.

2 Select Add Shared.

3 Under SAS Folders, navigate to /Products/SAS Intelligence Platform/
Samples.

4 Select Execution Options.

5 Click OK.

The following table contains a list of the execution options and the SAS macro
variables that they represent:

Table 7.8 Execution Options

Execution Option SAS Variable Name (Prompt Name)

Graphic device _GOPT_DEVICE

Output format _ODSDEST

ODS style _ODSSTYLE

Debug options _DEBUG

Search Page
You can access the search page for stored processes and stored process reports by
appending the _ACTION variable with a value of SEARCH (_ACTION=SEARCH) to

118 Chapter 7 / Building a Web Application with SAS Stored Processes

the SAS Stored Process Web Application URL. This is the seach.jsp file and is the
same page that is displayed if you click Search for Stored Processes and
Reports on the Welcome page. This form enables you to enter a search term and
select what columns are to be displayed in the search results. No wildcards are
accepted in the search term. The default behavior is to search the name fields of
both stored processes and stored process report for the specified string, and to
return only a Stored Processes column (which displays both stored processes and
stored process reports, as well as the folders that contain these objects) and a
Description column. You can either use the fields in the search page, or combine
_ACTION=SEARCH with values for the _MATCH, _FIELD, _COLUMNS, _TYPE, or
_PATH variables in order to modify search parameters.

If you search for stored processes with Sample in their name and specify that you
want all the columns to display, then the search results might look like the following
table. You can click a stored process in the search results to execute that stored
process. You can click a stored process report to display the last generation of that
stored process report. If the stored process report has not been previously run, then
it is run and then displayed. You can use the right mouse button on the column
headings to sort the display by that column.

Note: Any stored process that has the Hide from user check box selected in SAS
Management Console does not show up in the search results.

Using the SAS Stored Process Web Application Pages 119

XML Output
In addition to returning HTML output, the data for the various SAS Stored Process
Web Application displays can be obtained in XML format. The keyword xml can be
added to the _ACTION parameter to request that the corresponding data be
returned as XML. The _ACTION values for the tree, data, properties, and search
displays can be modified with the XML qualifier. Stand-alone clients such as Flex
based applications can use the XML data to build non-HTML displays.

Using HTTP Headers

Overview of HTTP Headers in Stored Processes
Stored process streaming output is always accompanied by an HTTP header. The
HTTP header consists of one or more header records that identify the content type
of the output and can provide other information such as encoding, caching, and
expiration directives. A streaming stored process client can use or ignore the HTTP
header. The SAS Stored Process Web Application forwards the HTTP client to the
web browser (or other HTTP client).

HTTP headers are defined by the HTTP protocol specification (RFC 2616), which
can be found at http://www.w3.org. Each header record is a single text line
consisting of a name and a value separated by a colon (:). The following example
shows records in an HTTP header:

 Content-type: text/html; encoding=utf-8
 Expires: Wed, 03 Nov 2004 00:00:00 GMT
 Pragma: nocache

You can set any HTTP record for your stored process output by calling the
STPSRV_HEADER function. For more information, see “STPSRV_HEADER
Function” on page 55. Typically, you must call STPSRV_HEADER before the
%STPBEGIN statement. The following DATA step function calls generate the
previous example header records:

 old = stpsrv_header("Content-type",
 "text/html; encoding=utf-8");
 old = stpsrv_header("Expires",
 "Wed, 03 Nov 2004 00:00:00 GMT");
 old = stpsrv_header("Pragma", "nocache");

You can also call this function directly from SAS macro code outside a DATA step.
Note that string parameters are not enclosed in quotation marks, and macro
characters such as semicolon (;) must be masked in this case:

 %let old = %sysfunc(stpsrv_header(Content-type,
 text/html%str(;) encoding=utf-8);
 %let old = %sysfunc(stpsrv_header(Expires,

120 Chapter 7 / Building a Web Application with SAS Stored Processes

 Wed, 03 Nov 2004 00:00:00 GMT));
 %let old = %sysfunc(stpsrv_header(Pragma, nocache));

Headers must be set before _WEBOUT is opened. There are several ways that
_WEBOUT can be opened. Here are some examples:

n data _null_;
file _webout;
...;
run;

n %STPBEGIN; * if the stored process creates streaming output;

n ods html body=_webout ... ;

Commonly Used Headers
The following are a few commonly used HTTP header records:

n Content-type

n Expires

n Location

n Pragma

n Set-Cookie

n Status-Code

Content-type
The Content-type header record is generated automatically. The value is set based
on the ODS destination that you use in your stored process. The value is
determined by looking up the ODS destination in the file types section of the SAS
registry and, if appropriate, the Windows registry. If you do not use ODS to generate
the output, then Content-type defaults to text/html. Use the STPSRV_HEADER
function if you want to override the default value. Override the value of Content-
type when you want to do any of the following:

n specify the encoding of the data. This might be important in web applications
where the client (typically a web browser) might expect a different encoding than
the stored process output. Examples:

Content-type: text/xml; encoding=utf-8
 Content-type: text/plain; encoding=iso-8859-1
 Content-type: text/html; encoding=windows-1252

n direct the output to a specific content handler. For example, HTML output can be
directed to Microsoft Excel (in later versions of Microsoft Office) by setting the
Content-type to application/vnd.ms-excel.

n override the default text/html value. Overriding this value typically occurs if you
are using ODS custom tagsets or you are not using ODS at all to generate the
output.

Using HTTP Headers 121

The following table shows commonly used Content-type values.

Table 7.9 Content Types

Content-type Description

application/octet-stream Unformatted binary data.

image/gif GIF (Graphics Interchange Format)
images.

image/jpeg JPEG (Joint Photographic Expert Group)
format images.

image/png PNG (Portable Network Graphics) format
images.

text/html HTML (Hypertext Markup Language).

text/plain Plain unformatted text.

text/xml XML (eXtensible Markup Language).

text/x-comma-separated-values Spreadsheet data.

Content-type values are also known as MIME types. For a list of all official MIME
types, see the IANA registry at http://www.iana.org/assignments/media-types/. An
unregistered MIME type or subtype can be used; the value should be preceded by
x-.

Expires
Web clients frequently cache HTML and other content. Accessing the same URL
might return the cached content instead of causing the output to be regenerated by
the server. Accessing the cached content is often desirable and reduces server and
network loads, but can lead to unexpected or stale data. The Expires header record
enables you to control how long a web client caches the content.

The Expires header record requires that the expiration time be specified in
Greenwich Mean Time (GMT) and in a particular format. A SAS picture format can
be used to create this value. Use PROC FORMAT to create a custom format as
shown in the following example:

 proc format;
 picture httptime (default=29)
 other='%a, %0d %b %Y %0H:%0M:%0S GMT'
 (datatype=datetime);
 run;

This format can be created one time and saved in a global format library, or you can
create it dynamically as needed in your stored process. The format generates a date
in this form:

122 Chapter 7 / Building a Web Application with SAS Stored Processes

 Sun, 24 AUG 2003 17:13:23 GMT

DATA step functions can then be used to set the desired expiration time, adjust to
GMT, and format, as shown in the following examples:

 /* Expire this page in six hours */
 data _null_;
 exptime = datetime() + '6:00:00't;
 old = stpsrv_header('Expires',
 put(exptime - gmtoff(), httptime.));
 run;

 /* Expire this page at the beginning of next
 week (Sunday, 00:00 local time) */
 data _null_;
 exptime = intnx('dtweek', datetime(), 1);
 old = stpsrv_header('Expires',
 put(exptime - gmtoff(), httptime.));
 run;

Specifying an expiration time in the past causes caching to be disabled for your
output. It is recommended that you also use the Pragma header record in this case.
For more information, see “Pragma” on page 124. Specify an expiration time far in
the future if you want your content to be cached indefinitely.

Location
The Location header record is unlike other header records. It redirects the web
client immediately to a different URL. Generally, all other header records and
content are ignored when this header record is used. Use this header to redirect the
client to another location for special conditions. For example, a stored process might
redirect a client to a Help URL if an invalid input or other error condition is detected.
For example, the following stored process redirects the web client to a static Help
page when an error condition is detected:

 %macro doSomething;

 ...

 %if error-condition %then %do;
 %let old = %sysfunc(stpsrv_header(Status-Code,302));
 %let old = %sysfunc(stpsrv_header(Location,
 http://myserv.abc.com/myapp/help.html));
 %goto end_processing;
 %end;

 ... normal processing ...

 %end_processing:
 %mend;

 %doSomething;

The URL that is specified in the Location header is not limited to a static URL. It
might be a SAS Stored Process Web Application or JSP URL, and it might contain
parameters. In the preceding example, the erroneous request, complete with input

Using HTTP Headers 123

parameters, can be redirected to an error handling stored process. The error
handling stored process can examine the input parameters and generate specific
error messages and context-sensitive Help. This is one method to avoid replicating
error handling or Help material across multiple stored processes.

Note: The Status-Code header must be used to set the HTTP status before the
Location header can be used.

Pragma
The Pragma header record is used to specify information not formally defined in the
HTTP specification. The most commonly used value is nocache. This value disables
web client caching of content for most web browsers. Some web browsers require
that other headers be set in order to prevent caching. For example:

old = stpsrv_header('Expires','Thu, 18 Nov 1999 12:23:34 GMT');
old = stpsrv_header('Cache-Control','no-cache,no-store');
old = stpsrv_header('Pragma','no-cache');

Set-Cookie
The Set-Cookie header record sends a cookie to the web client to maintain client-
side state. Here is the format:

 Set-Cookie: name=value; name2=
 value2; ...; expires=date;
 path=path; domain=domain_name; secure

where EXPIRES, PATH, DOMAIN, and SECURE are all optional. The date must be
specified in the HTTP GMT format that is described in “Expires” on page 122.

For example:

 old = stpsrv_header("Set-Cookie",
 "CUSTOMER=WILE_E_COYOTE; path=/SASStoredProcess/do; " ||
 "expires=Wed, 06 Nov 2002 23:12:40 GMT");

The next time your application is run, any matching cookies are returned in the
_HTCOOK environment variable, assuming that this variable has been enabled in
your SAS Stored Process Web Application environment. You must parse the cookie
string to retrieve the information that you saved in the cookie. Use the scan DATA
step function to split the name/value pairs on the semicolon (;) delimiters. Then split
the name/value pairs on the equal sign (=) delimiter.

Most web browsers support cookies, but some users disable them due to privacy
concerns, site policies, or other issues. If you use cookies, explain to your users why
you need them and if they must be enabled in order to use your application. Some
web clients might not support cookies at all.

124 Chapter 7 / Building a Web Application with SAS Stored Processes

Status-Code
The Status-Code header record is used by web applications to set the HTTP status
for every page that is returned to the web browser. For information about status
code definitions, see http://www.w3.org.

Embedding Graphics

Embedding Graphics in Web Pages
Web pages frequently contain embedded graphic images. For static images, an
 tag is enough to embed the image, as shown in the following example:

Dynamically generated images, such as charts that vary over time or due to input
parameters, are more complicated. Stored processes can generate graphics in
addition to HTML output. The following stored process creates a bar chart followed
by a tabular report:

 /* Sales by Region and Product */

 %stpbegin;

 title "Sales by Region and Product";
 legend1 label=none frame;

 proc gchart data=sashelp.shoes;
 hbar3d region / sumvar=sales
 sum space=.6
 subgroup=product
 shape=cylinder
 patternid=subgroup
 legend=legend1;
 label product='Shoe Style';
 run;

 proc report data=sashelp.shoes;
 column region product sales;
 define region / group;
 define product / group;
 define sales / analysis sum;
 break after region / ol summarize suppress skip;
 run;

 %stpend;

Embedding Graphics 125

Depending on input parameters, this stored process might produce the following
output:

Figure 7.1 Web Page with Embedded Graphic

No special code was added to handle the image. ODS and the stored process
framework takes care of the details of delivering both the HTML and the image to
the web browser. This code handles different image types through the
_GOPT_DEVICE input parameter that is supported by the %STPBEGIN macro. For
more information, see “Using the %STPBEGIN and %STPEND Macros” on page
18. The image is delivered to the web browser in different ways depending on the
graphics device. JAVA and ACTIVEX images are generated by embedding an
<OBJECT> tag in the generated HTML that contains the attributes and parameters
necessary to invoke the viewer and to display the graphic. There is no tag in

126 Chapter 7 / Building a Web Application with SAS Stored Processes

this case. Other commonly used drivers (GIF, JPEG, PNG, ACTXIMG, and
JAVAIMG) do use the tag. The following code is an HTML fragment that is
generated by the previous stored process using the GIF image driver:

<IMG SRC="/SASStoredProcess/do?_sessionid=
 7CF645EB-6E23-4853-8042-BBEA7F866B55
 &_program=replay&entry=
 STPWORK.TCAT0001.GCHART.GIF">

The image URL in the tag is actually a reference to the SAS Stored Process
Web Application that uses the special stored process named REPLAY. The REPLAY
stored process takes two parameters, _SESSIONID and ENTRY. _SESSIONID is
new, unique value each time the original stored process is executed. ENTRY is the
name of a temporary SAS catalog entry that contains the generated image. Image
replay uses a special, lightweight version of the stored process sessions feature to
hold image files temporarily until the web browser retrieves them. For more
information, see “Using Sessions” on page 47.

You can use the REPLAY stored process to replay entries other than embedded
images, such as CSS style sheets, JavaScript include files, PDF files, and HTML or
XML files to be displayed in a pop-up window, frame or <IFRAME>. The special
macro variable _TMPCAT contains the name of the temporary catalog that is used
for REPLAY entries. The variable _REPLAY contains the complete URL that is used
to reference the REPLAY stored process (except the actual entry name). The
_TMPCAT catalog remains on the server for only a limited time. If the catalog is not
accessed within a time-out period (typically 15 minutes), then the catalog and its
contents are deleted.

Generating Direct Graphic Output
In some cases, you might want to generate image output directly from a stored
process with no HTML container. This might be useful if you want to include a
dynamically generated graphic in static HTML pages or HTML generated by an
unrelated stored process, as shown in the following example:

 /* Sales by Product - pie chart stored process
 *
 * XPIXELS and YPIXELS input parameters are required */

 /* assume we want a new image generated
 * each time the image is viewed -
 * disable browser caching of this image */
 %let old=%sysfunc(stpsrv_header(Pragma, nocache));

 /* need test here in case XPIXELS
 * or YPIXELS are not defined */

 /* set up graph display options */
 goptions gsfname=_webout gsfmode=replace
 dev=png xpixels=&XPIXELS
 ypixels=&YPIXELS ftext=swiss;
pattern1 color=yellow;
pattern2 color=cyan;
pattern3 color=green;
pattern4 color=black;

Embedding Graphics 127

pattern5 color=red;
pattern6 color=blue;

 /* create a simple pie chart */
 proc gchart data=sashelp.shoes;
 pie3d product/sumvar=sales;
 run;
 quit;

This stored process expects XPIXELS and YPIXELS to be passed as input
parameters. A typical IMG tag to invoke this stored process might be similar to the
following example:

 <IMG SRC="/SASStoredProcess/do?_program=
 /WebApps/Utilities/Sales+by+Product&XPIXELS=
 400&YPIXELS=300">

which results in the following output:

Figure 7.2 Graphic Output

Note: Some web browser versions have a defect that causes the web browser to
ignore the NOCACHE and Expires directives in the HTTP header. This defect
causes the web browser to reuse the image that was previously generated from its
cache even if the HTTP header directed that no caching was to occur. This might
happen when embedding an image in an HTML page or when directly entering an
image URL in the web browser. The old image might be updated by manually
performing a web browser REFRESH or RELOAD, but it is difficult to work around
this problem without manual intervention.

128 Chapter 7 / Building a Web Application with SAS Stored Processes

Chaining Stored Processes

Why Chain Stored Processes?
Only the simplest stored process web applications contain a single web page. With
the addition of a second and subsequent pages, you face the problem of passing
information from one page to another. Typically, an application contains more than a
single stored process. This means that you must find a way to connect the stored
processes that compose your application and make sure that all of the data that is
collected along the way is available in the appropriate places.

It is good programming practice to design applications so that they do not request
the same information multiple times. Because HTTP is a stateless environment,
each request is separate from all other requests. If a user enters a phone number
on the first page of an application and submits the form, that phone number is
available as an input parameter to the first stored process. After that stored process
completes, the input parameters are lost unless they are explicitly saved. If the
second or third stored process in the application needs to know the specified phone
number, then the application must ask for the phone number again. There are
several ways to solve this problem. You can store data values in the following
locations:

n on the client in hidden form fields or URL parameters

n on the client in cookies

n on the server by using sessions

Note: When you are registering each stored process in a chain, you can check the
Hide from user box on the General tab in the Stored Process Properties dialog box
to hide the second and subsequent stored processes in a chain from the client
application. This option hides the stored process from the folder view and search
results for clients like the SAS Stored Process Web Application, so the user will not
try to execute the second or subsequent stored processes in a chain directly.

Passing Data through Form Fields or URL
Parameters

Storing data on the client in hidden fields or URL parameters is the simplest
technique. To do this, you must dynamically generate all of the HTML pages in your
application except for the initial page. Because each page functions as a
mechanism for transporting data values from the previous stored process to the next
stored process, it cannot be static HTML stored in a file.

Chaining Stored Processes 129

Usually, the application takes the following steps:

1 The first HTML page is a welcome or login screen for the application. After the
user enters any required information, the first stored process is executed by
submitting a form or clicking on a link.

2 The first stored process performs any necessary validation on the submitted
parameters and any required application initialization.

3 The first stored process writes an HTML page to the _WEBOUT output stream.
This HTML page might be an initial report or it might be the next navigation page
in the application. Links in this page typically execute another stored process
and pass user identity, user preferences, application state, or any other useful
information through hidden form fields or URL parameters.

4 Each succeeding link in the application executes another stored process and
passes any required information through the same technique.

Each hidden field in the second form can contain one name/value pair that is
passed from the first form. You should use unique names for all of the data values in
the entire application. In this way, you can pass all of the application data throughout
the entire application.

When you dynamically generate the second form, you can write out the name of the
second stored process in the hidden field _PROGRAM. Because the first stored
process contains the logic to determine the second stored process, this is referred
to as chaining stored processes. A stored process can chain to multiple stored
processes depending on the link that a user chooses or on data that is entered by
the users. The stored process can even chain back to itself.

In the following example, the MyWebApp application starts with a static HTML
welcome page:

 <!-- Welcome page for MyWebApp -->
 <HTML>
 <HEAD><TITLE>Welcome to MyWebApp
 </TITLE></HEAD>
 <BODY><H1>Welcome to MyWebApp</H1>
 <FORM ACTION="/SASStoredProcess/do">
 Please enter your first name:
 <INPUT TYPE="text" NAME="FNAME">

 <INPUT TYPE="hidden" NAME="_program"
 VALUE="/WebApps/MyWebApp/Ask Color">
 <INPUT TYPE="submit" VALUE="Run Program">
 </FORM>
 </BODY></HTML>

This welcome page prompts the user for a first name and passes the value as the
FNAME input parameter to the /WebApps/MyWebApp/Ask Color stored process, as
in the following example:

 /* Ask Color stored process
 *
 * This stored process prompts for the user's favorite
 * and passes it to the Print Color stored process.
 */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<H1>Welcome to MyWebApp</H1>';

130 Chapter 7 / Building a Web Application with SAS Stored Processes

 /* Create reference back to the Stored Process
 Web Application from special automatic
 macro variable _URL. */
 put "<FORM ACTION='&_URL'>";

 /* Specify the stored process to be executed using
 the _PROGRAM variable. */
 put '<INPUT TYPE="hidden" NAME="_program" '
 'VALUE="/WebApps/MyWebApp/Print Color">';

 /* Pass first name value on to next program.
 The value is user entered text, so you must
 encode it for use in HTML. */
 fname = htmlencode("&FNAME", 'amp lt gt quot');
 put '<INPUT TYPE="hidden" NAME="fname" VALUE="'
 fname +(-1) '">
';

 put 'What is your favorite color?';
 put '<SELECT SIZE=1 NAME="fcolor">';
 put '<OPTION VALUE="red">red</OPTION>';
 put '<OPTION VALUE="green">green</OPTION>';
 put '<OPTION VALUE="blue">blue</OPTION>';
 put '<OPTION VALUE="other">other</OPTION>';
 put '</SELECT>
';
 put '<INPUT TYPE="submit" VALUE="Run Program">';
 put '</FORM>';
 put '</HTML>';
 run;

This stored process simply creates an HTML form that prompts the user for more
information. The reserved macro variable _URL is used to refer back to the SAS
Stored Process Web Application. This enables you to move the web application
without modifying each stored process. The _PROGRAM variable specifies the
stored process that processes the contents of the form when it is submitted. In order
to keep the FNAME that was entered in the initial page, place it in the form as a
hidden field. Because the value was entered by the user, it must be encoded using
the HTMLENCODE function in case it contains any character that might be
interpreted as HTML syntax. The form prompts the user for a color choice and
chains to a new stored process named Print Color, as in the following example:

 /* Print Color stored process
 *
 * This stored process prints the user's
 * first name and favorite color.
 */
 data _null_;
 file _webout;
 put '<HTML>';
 fname = htmlencode("&FNAME");
 put 'Your first name is '
 fname +(-1) '';
 put '
';
 put "Your favorite color is
 &FCOLOR";
 put '
';
 put '</HTML>';

Chaining Stored Processes 131

 run;

The Print Color stored process prints the values of the variables from both the
first and second forms, illustrating that the data has been correctly passed
throughout the entire application.

A variation of this technique uses URL parameters instead of hidden form fields.
The following example code is an alternative implementation of the Ask Color
stored process:

 /* Ask Color stored process
 *
 * This stored process prompts for the user's favorite
 * and passes it to the Print Color stored process.
 */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<H1>Welcome to MyWebApp</H1>';

 /* Build a URL referencing the next stored process.
 * Use URLENCODE to encode any special characters in
 * any parameters. */
 length nexturl $500;
 nexturl = "&_URL?_program=
 /WebApps/MyWebApp/Print Color" ||
 '&fname=' || urlencode("&FNAME");

 put 'What is your favorite color?';
 put '';
 put '<A HREF="' nexturl +(-1)
 '&color=red">red';
 put '<A HREF="' nexturl +(-1)
 '&color=green">green';
 put '<A HREF="' nexturl +(-1)
 '&color=blue">blue';
 put '<A HREF="' nexturl +(-1)
 '&color=other">other';
 put '';
 put '</HTML>';
 run;

This stored process generates a separate URL link for each color choice. The end
result is the same as the first implementation of Ask Color; the Print Color stored
process is executed with both FNAME and COLOR input parameters.

The technique of passing data by using hidden fields or URL parameters has the
following advantages:

n simple to perform

n easy to debug

n state is maintained indefinitely

n allows stored processes to be distributed across multiple servers

The major disadvantages of this technique are the necessity to use dynamically
generated HTML for all pages in the application and the security and visibility of the
data. The data in hidden fields is readily visible to the client by viewing the HTML
source (and is directly visible in the URL when using GET method forms). The data

132 Chapter 7 / Building a Web Application with SAS Stored Processes

is easily changed by the user, and falsified or inconsistent data can be submitted to
the application. Sensitive data should be validated in each new stored process,
even if it is passed from generated hidden fields.

Passing Data through the DATA Step
Instead of using a JSP file to create a custom input form, you can use HTML
following the CARDS4 statement in a DATA step. Follow these instructions to create
your custom HTML form:

n Insert your HMTL code after the CARDS4 statement in place of the existing
HTML code.

n Modify the %LET STPNAME statement to specify the name of the next stored
process that is to be executed in the HTML form that is created.

This sample stored process creates a custom HTML page that is used to execute
another stored process. The DATA step reads the input lines and resolves any
macro variables that are specified (such as &stpname and &_URL). This method
provides an alternative to the approach of creating a custom JSP file that is stored
on your web server.

%let stpname=/Samples/Stored Processes/Sample: Frequency Analysis of
 Municipalities;

data _null_;
 format infile $char256.;
 input;
 infile = resolve(_infile_);
 file _webout;
 put infile;
cards4;
<HTML>
<BODY>
<H1>Sample: Frequency Analysis of Municipalities</H1>
This sample illustrates the data analysis capabilities of stored
processes.

<FORM ACTION="&_URL">
<INPUT TYPE="HIDDEN" NAME="_program" VALUE="&stpname">
<HR>
Choose a table to display:

<INPUT TYPE=RADIO NAME="table" value="city*dept" CHECKED>City by
Dept

<INPUT TYPE=RADIO NAME="table" value="city*week">City by Week

<INPUT TYPE=RADIO NAME="table" value="dept*week">Dept by Week

<HR>
<INPUT TYPE="SUBMIT" VALUE="Run Procedure">
<INPUT TYPE="CHECKBOX" NAME="_debug" VALUE="log">Show SAS Log
</FORM>
</BODY>
</HTML>
;;;;
run;

Chaining Stored Processes 133

Passing Data through Cookies
HTTP cookies are packets of information that are stored in the client web browser.
They are shuttled back and forth with the application requests. In a general sense,
they are quite similar to hidden form fields, but they are automatically passed with
every request to the application. Cookies have the advantage of being nearly
invisible to the user. They contain a built-in expiration mechanism, and they are
slightly more secure than hidden fields. They also work seamlessly across multiple
stored process servers and web applications and are preserved even if your
application uses static HTML pages. For more information about setting and using
cookies, see “Set-Cookie” on page 124. You must enable HTTP cookies in your web
application configuration. For more information, see “Configuring the SAS Stored
Process Web Application ” on page 83.

HTTP cookies can be complex to generate and parse. Carefully consider names,
paths, and domains to ensure that your cookie values do not conflict with other
applications that are installed on the same web server. HTTP cookies can also be
disabled by some clients due to privacy concerns.

Passing Data through Sessions
Sessions provide a simple way to save state on the server. Instead of passing all of
the saved information to and from the web client with each request, a single session
key is passed and the data is saved on the server. Applications must use all
dynamically generated HTML pages, but the hidden fields or URL parameters are
much simpler to generate. In addition, sessions provide a method to save much
larger amounts of information, including temporary data sets or catalogs. Sessions
have the disadvantage of binding a client to a single server process, which can
affect the performance and scalability of a web application. Sessions are not
recommended for simple applications that pass small amounts of data from one
stored process to another. For more information, see “Using Sessions” on page 47.

Using Sessions in a Sample Web
Application

Overview of the Sample Web Application
The following sample web application demonstrates some of the features of stored
process sessions. The sample application is an online library. Users can log on,
select one or more items to check out of the library, and request by email that the
selected items be delivered. The sample code shows how to create a session and

134 Chapter 7 / Building a Web Application with SAS Stored Processes

then create, modify, and view macro variables and data sets in that session. For
more information, see “Using Sessions” on page 47.

Sample Data
This sample requires a LIB_INVENTORY data set in the SAMPDAT library that is
used for other SAS Integration Technologies samples. You can create the data set
in Windows using the following code. You can also use the code in other operating
environments by making the appropriate modifications to the SAMPDAT LIBNAME
statement.

 libname SAMPDAT 'C:\My Demos\Library';
 data SAMPDAT.LIB_INVENTORY;
 length type $10 desc $80;
 input refno 1-5 type 7-16 desc 17-80;
 datalines4;
 17834 BOOK SAS/GRAPH Software: Reference
 32345 BOOK SAS/GRAPH Software: User's Guide
 52323 BOOK SAS Procedures Guide
 54337 BOOK SAS Host Companion for UNIX Environments
 35424 BOOK SAS Host Companion for OS/390 Environment
 93313 AUDIO The Zen of SAS
 34222 VIDEO Getting Started with SAS
 34223 VIDEO Introduction to AppDev Studio
 34224 VIDEO Building Web Applications with
 SAS Stored Processes
 70001 HARDWARE Cellphone - Model 5153
 70002 HARDWARE Video Projector - Model 79F15
 ;;;;

Main Aisle Stored Process
The main aisle page is generated by the Main Aisle stored process. This page acts
as a welcome page to new users. A session is created the first time a user executes
this stored process.

 /* Main Aisle of the Online Library */
 data _null_;
 file _webout;
 if libref('SAVE') ne 0 then
 rc = stpsrv_session('create');
 put '<HTML>';
 put '<HEAD><TITLE>Online Library
 Main Aisle</TITLE></HEAD>';
 put;
 put '<BODY vlink="#004488" link="#0066AA"
 bgcolor="#E0E0E0">';
 put '<H1>Online Library Main Aisle</H1>';
 put;
 put 'Select one of the following
 areas of the library:';

Using Sessions in a Sample Web Application 135

 put '';
 length hrefroot $400;
 hrefroot = symget('_THISSESSION') ||
 '&_PROGRAM=/WebApps/Library/';
 put '<A HREF="' hrefroot +(-1)
 'Aisles&type=Book">Book Aisle';
 put '<A HREF="' hrefroot +(-1)
 'Aisles&type=Video">Video Aisle';
 put '<A HREF="' hrefroot +(-1)
 'Aisles&type=Audio">Audio Aisle';
 put '<A HREF="' hrefroot +(-1)
 'Aisles&type=Hardware">Hardware Aisle';
 put '<A HREF="' hrefroot +(-1)
 'Shopping Cart">View my shopping cart';
 put '<A HREF="' hrefroot +(-1)
 'Logout">Logout';
 put '';
 put '</BODY>';
 put '</HTML>';
 run;

The main aisle page consists of a list of links to specific sections of the Online
Library.

Each link in this page is built using the _THISSESSION macro variable. This
variable includes both the _URL value pointing back to the SAS Stored Process
Web Application and the _SESSIONID value that identifies the session.

136 Chapter 7 / Building a Web Application with SAS Stored Processes

Aisles Stored Process
The library is divided into aisles for different categories of library items. The pages
for each aisle are generated by one shared Aisles stored process. The stored
process accepts a TYPE input variable that determines which items to display.

 /* Aisles - List items in a specified aisle.
 The aisle is specified by the TYPE variable. */
 libname SAMPDAT 'C:\My Demos\Library';

 /* Build a temporary data set that contains the
 selected type, and add links for selecting
 and adding items to the shopping cart. */
 data templist;
 if libref('SAVE') ne 0 then
 rc = stpsrv_session('create');
 set SAMPDAT.LIB_INVENTORY;
 where type="%UPCASE(&type)";
 length select $200;
 select = '<A HREF="' || symget("_THISSESSION") ||
 '&_program=/WebApps/Library/Add+Item&REFNO=' ||
 trim(left(refno)) || '&TYPE=' || "&TYPE" ||
 '">Add to cart';
 run;
 ods html body=_webout(nobot) rs=none;
 title Welcome to the &type Aisle;
 proc print data=templist noobs label;
 var refno desc select;
 label refno='RefNo' desc='Description' select='Select';
 run;
 ods html close;
 data _null_;
 file _webout;
 put '<P>';
 put 'Return to <A HREF="' "&_THISSESSION"
 '&_PROGRAM=/WebApps/Library/Main+Aisle'
 '">main aisle
';
 put 'View my <A HREF="' "&_THISSESSION"
 '&_PROGRAM=/WebApps/Library/Shopping+Cart'
 '">shopping cart
';
 put '</BODY>';
 put '</HTML>';
 run;

The stored process selects a subset of the LIB_INVENTORY data set by using a
WHERE clause, and then uses PROC PRINT to create an HTML table. A temporary
data set is created. This data set contains the selected items that users can use to
add items. An additional column is generated from the LIB_INVENTORY data set
that has an HTML link that users can use to add the item to their shopping cart.

In this stored process, both ODS and a DATA step are used to generate HTML. The
ODS HTML statement includes the NOBOT option that indicates that more HTML is
appended after the ODS HTML CLOSE statement. The navigation links are then

Using Sessions in a Sample Web Application 137

added using a DATA step. The following display shows the contents of the Book
Aisle.

Add Item Stored Process
The Add Item stored process is run when the user clicks the Add to cart link in the
aisle item table. The specified item is copied from the LIB_INVENTORY data set to
a shopping cart data set in the session library (SAVE.CART). The session and the
data set remain accessible to all programs in the same session until the session is
deleted or it times out.

 /* Add Item - Add a selected item to the shopping cart.
 This stored process uses REFNO and TYPE input
 variables to identify the item. */
 libname SAMPDAT 'C:\My Demos\Library';

138 Chapter 7 / Building a Web Application with SAS Stored Processes

 /* Perform REFNO and TYPE verification here. */
 /* Append the selected item. */
 proc append base=SAVE.CART data=SAMPDAT.LIB_INVENTORY;
 where refno=&refno;
 run;
 /* Print the page. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Selected Item Added to
 Shopping Cart</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA"
 bgcolor="#E0E0E0">';
 put "<H1>Item &refno Added</H1>";
 put 'Return to <A HREF="' "&_THISSESSION"
 '&_PROGRAM=/WebApps/Library/Aisles'
 '&TYPE=' "&TYPE" '">' "&TYPE aisle
";
 put 'Return to <A HREF="' "&_THISSESSION"
 '&_PROGRAM=/WebApps/Library/Main+Aisle'
 '">main aisle
';
 put 'View my <A HREF="' "&_THISSESSION"
 '&_PROGRAM=/WebApps/Library/Shopping+Cart'
 '">shopping cart
';
 put '</BODY>';
 put '</HTML>';
 run;

The program prints an information page that has navigation links.

Shopping Cart Stored Process
The Shopping Cart stored process displays the contents of the shopping cart.

 /* Shopping Cart - Display contents of the shopping cart

Using Sessions in a Sample Web Application 139

 * (SAVE.CART data set). */
 %macro lib_cart;
 %let CART=%sysfunc(exist(SAVE.CART));
 %if &CART %then %do;
 /* This program could use the same technique as the
 LIB_AISLE program in order to add a link to each
 line of the table that removes items from the
 shopping cart. */
 /* Print the CART contents. */
 ods html body=_webout(nobot) rs=none;
 title Your Selected Items;
 proc print data=SAVE.CART noobs label;
 var refno desc;
 label refno='RefNo' desc='Description';
 run;
 ods html close;
 %end;
 %else %do;
 /* No items in the cart. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>No items
 selected</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA"
 bgcolor="#E0E0E0">';
 put '<H1>No Items Selected</H1>';
 put;
 run;
 %end;
 /* Print navigation links. */
 data _null_;
 file _webout;
 put '<P>';
 if &CART then do;
 put '<FORM ACTION="' "&_url" '">';
 put '<INPUT TYPE="HIDDEN" NAME="_program"
 VALUE="/WebApps/Library/Logout">';
 put '<INPUT TYPE="HIDDEN" NAME="_sessionid"
 VALUE="' "&_sessionid" '">';
 put '<INPUT TYPE="HIDDEN" NAME="CHECKOUT"
 VALUE="YES">';
 put '<INPUT TYPE="SUBMIT"
 VALUE="Request these items">';
 put '</FORM><P>';
 end;
 put 'Return to <A HREF="' "&_THISSESSION"
 '&_PROGRAM=/WebApps/Library/Main+Aisle'
 '">main aisle
';
 put '<A HREF="' "&_THISSESSION"
 '&_PROGRAM=/WebApps/Library/Logout'
 '&CHECKOUT=NO">Logout
';
 put '</BODY>';
 put '</HTML>';
 run;
 %mend;

140 Chapter 7 / Building a Web Application with SAS Stored Processes

 %lib_cart;

The contents of the shopping cart are displayed using a PROC PRINT statement.
The page also includes a request button and navigation links. The request button is
part of an HTML form. In order to connect to the same session, include the
_SESSIONID value in addition to the _PROGRAM value. These values are usually
specified as hidden fields. This program also has a hidden CHECKOUT field that is
initialized to YES in order to indicate that the user is requesting the items in the cart.

The program prints a page that contains the contents of the shopping cart.

Logout Stored Process
The Logout stored process checks the user out of the Online Library. If the
CHECKOUT input variable is YES, then all of the items in the user's shopping cart
are requested through email.

 /* Logout - logout of Online Library application.
 Send email to the library@abc.com account with
 requested item if CHECKOUT=YES is specified. */
 %macro lib_logout;
 %global CHECKOUT;
 /* Define CHECKOUT in case it was not input. */
 %if %UPCASE(&CHECKOUT) eq YES %then %do;
 /* Checkout - send an email request to the library.
 See the documentation for the email access method
 on your platform for more information on the
 required options. */

Using Sessions in a Sample Web Application 141

 /* ***************** disabled for demo *************
 filename RQST EMAIL 'library@abc.com'
 SUBJECT='Online Library Request for &_username';
 ods listing body=RQST;
 title Request for &_username;
 proc print data=SAVE.CART label;
 var refno type desc;
 label refno='RefNo' type='Type'
 desc='Description';
 run;
 ods listing close;
 * *** */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Library
 Checkout</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA"
 bgcolor="#E0E0E0">';
 put '<H1>Library Checkout</H1>';
 put;
 put 'The items in your shopping cart have
 been requested.';
 put '<P>Requested items will normally
 arrive via interoffice';
 put 'mail by the following day. Thank you
 for using the Online Library.';
 put '<P><A HREF="' "&_URL"
 '?_PROGRAM=/WebApps/Library/Main+Aisle"
 >Click here';
 put 'to re-enter the application.';
 put '</BODY>';
 put '</HTML>';
 run;
 %end;
 %else %do;
 /* Logout without requesting anything. */
 data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Logout</TITLE></HEAD>';
 put '<BODY vlink="#004488" link="#0066AA"
 bgcolor="#E0E0E0">';
 put '<H1>Library Logout</H1>';
 put;
 put '<P>Thank you for using the Online Library.';
 put '<P><A HREF="' "&_URL"
 '?_PROGRAM=/WebApps/Library/Main+Aisle"
 >Click here';
 put 'to re-enter the application.';
 put '</BODY>';
 put '</HTML>';
 run;
 %end;
 %mend;
 %lib_logout;

142 Chapter 7 / Building a Web Application with SAS Stored Processes

 /* User is finished - delete the session. */
 %let rc=%sysfunc(stpsrv_session(delete));

An information page is displayed if the user chooses to request the shopping cart
items.

A logoff screen is displayed if the user selects the Logout link.

Note: Logging off is not required. All sessions have an associated time-out (the
default is 15 minutes). If the session is not accessed for the duration of the time-out,
then the session and all temporary data in the session are deleted. In this sample,
the SAVE.CART data set is automatically deleted when the session time-out is
reached. You can change the session time-out by using the STPSRVSET('session
timeout',seconds) function inside the program.

Using Sessions in a Sample Web Application 143

Error Handling
You can write custom JSPs to handle a set of common errors. For more information
about the default error JSPs for the SAS Stored Process Web Application, see
“Custom Responses” on page 85.

If an error occurs while the stored process is running, then you get an error
message with a button that you can click to show the SAS log.

In order to disable the Show SAS Log button, you can set the web application
initialization parameter ShowLogButton to false or set the DebugMask initialization
parameter to completely disable debug logging. For more information, see
“Debugging in the SAS Stored Process Web Application ” on page 145.

If an error is detected before the output stream back to the web browser is opened,
then the HTTP header line X-SAS-STP-ERROR is returned. This can be used by
programs that make URL connections to the SAS Stored Process Web Application.

144 Chapter 7 / Building a Web Application with SAS Stored Processes

Debugging in the SAS Stored Process
Web Application

Testing the SAS Stored Process Web Application
After the SAS Stored Process Web Application has been installed, it can be tested
by invoking it directly from a web browser. To execute the SAS Stored Process Web
Application, enter the web application URL in the web browser. Either the default
Welcome page or static version data is returned.

For example, if you enter the following SAS Stored Process Web Application URL:

http://yourserver.com:8080/SASStoredProcess/do

then you either get the data from the Welcome.jsp page if it has been installed, or a
display similar to the following display:

 Stored Process Web Application

 Version 9.4 (Build 499)

If an error is returned, then the installation was not completed successfully or the
URL that was entered is incorrect.

The reserved macro variable _DEBUG provides you with several diagnostic options.
Using this variable is a convenient way to debug a problem, because you can
supply the debug values by using the web browser to modify your HTML or by
editing the URL in your web browser's location field. For example, to see the
installed environment for the SAS Stored Process Web Application, the URL can be
entered with _DEBUG=ENV appended. A table is returned, which contains the
system values for the SAS Stored Process Web Application environment.

List of Valid Debugging Keywords
You can activate the various debugging options by passing the _DEBUG variable to
the SAS Stored Process Web Application. Keywords are used to set the debugging
options. Multiple keywords can be specified, separated by commas or spaces. Here
is an example:

 _DEBUG=TIME,TRACE

Some debugging flags might be locked out at your site for security reasons. Verify
with your administrator which flags are locked out at your site. The following chart is
a list of valid debugging keywords:

Debugging in the SAS Stored Process Web Application 145

Table 7.10 Debugging Keywords

Keyword Description

FIELDS Displays the stored process input
parameters.

TIME Returns the processing time for the
stored process.

DUMP Displays output in hexadecimal format.

LOG Returns the SAS log file. This log is
useful for diagnosing problems in the
SAS code.

TRACE Traces execution of the stored process.
This option is helpful for diagnosing the
SAS Stored Process Web Application
communication process. You can also
use this option to see the HTTP headers
that the server returns.

LIST Lists known stored processes.

ENV Displays the SAS Stored Process Web
Application environment parameters.

Setting the Default Value of _DEBUG
Web application initialization parameters can be used to set default values for the
_DEBUG parameter or to limit the allowable values. Any of the valid keywords that
are listed in the preceding table can be specified as a comma-separated list for the
Debug initialization parameter. These values become the default debugging values
for each request. The initialization parameter DebugMask can be used to specify a
list of _DEBUG values that are valid. For more information about initialization
parameters, see “Configuring the SAS Stored Process Web Application ” on page
83.

Enabling Logging
To enable logging for stored processes that are executed by the SAS Stored
Process Web Application, perform the following steps:

1 Open the \Lev1\Web\Common\LogConfig\SASStoredProcess-log4j.xml file.

2 Change the value of priority to "INFO".

146 Chapter 7 / Building a Web Application with SAS Stored Processes

<category additivity="false"
 name="com.sas.services.storedprocess.webapp">
 <priority value="INFO"/>
 <appender-ref ref="SAS_CONSOLE"/>
 <appender-ref ref="SAS_FILE"/>
</category>

Character Encoding
The SAS Stored Process Web Application is configured to accept parameters that
have been UTF-8 encoded. If any URL links are created to access the web
application, the parameters in the URL should be encoded. If links are created in the
form http://yourserver.com:8080/SASStoredProcess/do?_program=/User1/
myprogram&x1=ääkkö, then an error is returned. If the following error is returned
when you access the web application, verify that all parameters have been
encoded:

STP: Parameter 'xxxxxx' contains characters that
cannot be processed by the SAS server (wlatin1 encoding).

You can determine the encoding that the SAS Stored Process Web Application is
using by submitting the following request from your web browser: http://
yourserver.com:8080/SASStoredProcess/do?_debug=env The
servlet.character.encoding value indicates the encoding that the SAS Stored
Process Web Application is using to send parameters to the SAS Stored Process
Server. The servlet encoding is set for the SAS Stored Process Web Application in
the web.xml file CharacterEncodingFilter.

Perform the following steps to make sure that all parameter values are properly
encoded:

1 Submit the request using the _DEBUG=TRACE,LOG parameter in the URL for
the SAS Stored Process Web Application request so that the parameter values
that are being passed are displayed, as shown in this example: http://
yourserver.com:8080/SASStoredProcess/do?_debug=trace,log.

2 Check the list of input parameters for a value that contains a character that is not
displayed properly. For example, you might see a small square box instead of a
printable character.

3 Modify your input parameters to remove any invalid characters or change the
values to UTF-8 encoding. The SAS Stored Process Web Application uses
UTF-8 encoding, so values should also be encoded in UTF-8. If the HTML pages
are being created by a SAS program, the URLENCODE function can be used to
create the links. This function can also be run manually to get the encoded string
for any value. For example, the following code returns this string:
%C3%A4%C3%A4kk%C3%B6.

options urlencoding="UTF8";

data _null_;
 x1= urlencode ('ääkkö');
 put x1;
run;

Debugging in the SAS Stored Process Web Application 147

Place the UTF-8 encoded parameters in the web application URL as follows:
http://yourserver.com:8080/SASStoredProcess/do?_program=/User1/
myprogram&x1=%C3%A4%C3%A4kk%C3%B6.

In addition, you can specify the UTF-8 encoding in a FILE_WEBOUT statement,
as shown in this example:

data _null_;
 file _webout encoding='utf-8';
 x1= urlencode ('ääkkö');
 put x1;
run;

148 Chapter 7 / Building a Web Application with SAS Stored Processes

Chapter 8
STP Procedure

Overview: STP Procedure . 149
What Does the STP Procedure Do? . 149

Concepts: STP Procedure . 150
Requirements for Specifying User Formats with PROC STP 150
Automatic Macro Variables Generated by PROC STP . 151

Syntax: STP Procedure . 153
PROC STP Statement . 154
INPUTDATA Statement . 157
INPUTFILE Statement . 159
INPUTPARAM Statement . 162
LIST Statement . 166
LOG Statement . 170
OUTPUTDATA Statement . 171
OUTPUTFILE Statement . 174
OUTPUTPARAM Statement . 176

Example: Generating an ODS Document File . 178

Overview: STP Procedure

What Does the STP Procedure Do?
The STP procedure enables stored process execution from a SAS program. PROC
STP can be executed in an interactive, batch, or server SAS session and can also
be executed by another stored process. PROC STP can run the stored process
locally or remotely, based on the SERVER option and the stored process metadata.

If the stored process executes remotely (which is the default), then PROC STP
executes stored processes on the CONNECT or Grid server that is specified for the
SAS Application Server in metadata. If the stored process executes locally, then it

149

runs within an independent execution environment with its own WORK library and
macro symbol table. Data, files, and macro values can be passed between the SAS
environment and the stored process environment by using optional PROC STP
statements.

Note:

n PROC STP must have access to the stored process metadata in order to locate
the stored process source code. PROC STP also checks input parameters
against the input parameters that are defined in the metadata. In order to specify
the metadata server and connection profile to use with PROC STP, use the
following system options: METASERVER, METAPORT, METAUSER, and
METAPASS. Define these options before running PROC STP.

n PROC STP cannot display prompts at run time. When you execute stored
processes using PROC STP, you can use the INPUTPARAM statement to
provide prompt values.

Concepts: STP Procedure

Requirements for Specifying User Formats with
PROC STP

Starting with SAS 9.4, you can specify user formats with PROC STP. In order to use
the FMTSEARCH system option to search format catalogs, you must meet the
following requirements:

n Any format catalog to be accessed in the stored process must have an
INPUTDATA specification, for example:

INPUTDATA fmtcat=fmtlib.formats / MT=CATALOG;

The ‘input-data-file’ argument (in this case, fmtcat) does not need to be
referenced in the stored process. You can define multiple format catalogs to
pass into the stored process environment. There is no restriction on the library in
which the formats reside.

n The special input parameter '_FMTSEARCH' must be specified. This parameter
specifies which format catalogs need to be appended to the FMTSEARCH
option in the stored process environment. The value of this parameter should be
a blank-delimited list of the INPUTDATA arguments that are specified for the
desired catalogs.

INPUTPARAM _FMTSEARCH='fmtcat< fmtcat2 …>';

For multiple catalogs, the order in the string is the order the catalogs will appear
in the stored process FMTSEARCH.

150 Chapter 8 / STP Procedure

Note: The current FORMATSEARCH system option value is not automatically
passed into stored process.

The following example shows how PROC STP can use user formats:

filename _webout '…output file…';

proc format library=work.myfmts;
value $gender 'M'='Guy'
 'F'='Gal';
run;
options fmtsearch=(work.myfmts);

* Build CLASS data set with user format here;
libname datalib '…your library…';

data datalib.class;
 format sex $gender.;
 set sashelp.class;
run;

proc stp program='/Users/johndoe/procstp/format';
 inputdata mydata = datalib.class;
 inputdata myfmt = work.myfmts / mt=catalog;
 outputfile _webout;
 inputparam _fmtsearch='myfmt';
run;

Automatic Macro Variables Generated by PROC
STP

PROC STP typically sets its exit code to either 0 or 1012 (error). However, if the
grammar parser generates a warning, then the exit code might be 4. The SYSCC
macro variable is updated with this value if it is greater than the current setting. This
variable indicates the maximum exit code that was returned in the SAS stream,
unless it has been reset by the user.

The exit code for the procedure does not directly correspond to the exit code (that
is, SYSCC) from the stored process environment. The stored process is not
executing in the same SAS stream environment as the procedure. If the stored
process returns anything greater than a warning (4), then the exit code for the
procedure is an error (1012). If the stored process returns 4 or less, then the exit
code for the procedure is 0. These numbers reflect whether the stored process ran
with an error (1012) or without an error (0). The actual stored process exit code is
output to the SAS log at the end of the procedure.

Starting with SAS 9.4M2, the procedure provides the following two macro variables
to the user when exiting to communicate status from the stored process. You can
incorporate these macro variables in your code if you want the SAS stream to
behave differently based on what happened in the stored process.

Concepts: STP Procedure 151

_STPCC
specifies the maximum exit code from the stored process environment, taken
from the SYSCC macro value in that environment. The SYSCC value can be set
by any SAS component. See SAS Macro Language: Reference for more
information about the SYSCC automatic macro variable.

For remote execution, the SYSCC value has to be retrieved before the remote
SAS session terminates. If the remote session terminates unexpectedly before
the procedure can retrieve the SYSCC value, then _STPCC is set to 1012
(error).

_STPRC
specifies the current return code from the stored process environment. This
number is chosen by the component that is setting it.

Note: For remote execution, _STPRC cannot be set reliably and is always 0.

The _STPCC and _STPRC macro variables can also be set by the ABORT and
%ABORT statements. These two statements have identical options and generate
identical exit codes. The specific values that they generate depend on the options
that are specified in the statement.

_STPCC
The following table shows the _STPCC values that are generated by specific
ABORT or %ABORT statements. These values are always applicable for locally
executed stored processes, but are limited for remotely executed stored
processes. These statements are used to stop the current SAS step, and
sometimes to immediately terminate the SAS session. Thus, if the remote
session is terminated, the _STPCC can only be set to 1012 (error).

Generated Value Statement

20,000 (%)ABORT ;

5 (%)ABORT CANCEL ;

6 (%)ABORT CANCEL FILE ;

20,001 (%)ABORT RETURN ;

20,002 (%)ABORT ABEND ;

_STPRC
This value can be specified in an optional n argument for the ABORT or
%ABORT statement. If the n argument is not specified, then _STPRC is set to 0.

Note: For remote execution, _STPRC cannot be set reliably and is always 0.

See SAS Macro Language: Reference for more information about the %ABORT
statement. See SAS DATA Step Statements: Reference for more information about
the ABORT statement.

152 Chapter 8 / STP Procedure

Syntax: STP Procedure
PROC STP PROGRAM='metadata-path-of-stored-process' <ODSOUT=STORE |
REPLAY>
<SERVER=LOCAL | "server-name">;

INPUTDATA input-data-source(s) </ <REMOTE> <MEMTYPE=DATA | VIEW |
CATALOG>>;

INPUTFILE input-file(s) </ REMOTE >;
INPUTPARAM parameter-name-1<="parameter-value-1">

<parameter-name-2<="parameter-value-2"> …>;
LIST< GROUP=level | (level1 level2 ...)>;
LOG FILE=local-fileref | local-file-path;
OUTPUTDATA output-data-target(s) </ <REMOTE> <MEMTYPE=DATA |

CATALOG>>;
OUTPUTFILE output-file(s) </ REMOTE >;
OUTPUTPARAM parameter-name-1<="local-variable-name-1">

<parameter-name-2<="local-variable-name-2">…>;;

Statement Task

PROC STP Executes a stored process

INPUTDATA Defines input data files for the execution of the stored
process

INPUTFILE Defines input files for the execution of the stored process

INPUTPARAM Defines input parameters for the execution of the stored
process

LIST Lists details about the stored process that is specified by
the PROGRAM= option

LOG Controls the location of the stored process log

OUTPUTDATA Defines output data files that are produced by the
execution of the stored process

OUTPUTFILE Defines output files that are produced by the execution of
the stored process

OUTPUTPARAM Defines output parameters that are produced by the
execution of the stored process

Syntax: STP Procedure 153

PROC STP Statement
Executes a stored process.

Syntax
PROC STP PROGRAM='metadata-path-of-stored-process' <ODSOUT=STORE |
REPLAY>
<SERVER=LOCAL | server-name>;

Required Argument
PROGRAM='metadata-path-of-stored-process'

specifies the metadata location of the stored process to be executed.

Optional Arguments
ODSOUT=STORE | REPLAY

specifies a destination for ODS output from the stored process. If you specify
STORE, then the ODS output is stored so that it can be used by subsequent
SAS statements. If you specify REPLAY, then the ODS output is displayed in the
Output window of the SAS windowing environment.

Note: This option is supported only when the local machine and the remote
server machine have compatible architectures. The machines must be using the
same type of operating system and have the same data type attributes.

SERVER=LOCAL | "server-name"
specifies whether the stored process executes locally or on a specified remote
application server. This option is useful if you need the stored process to execute
on a server other than the default server. Remember that stored processes are
associated with an application server context, which defines the environment in
which the stored process executes. Application server contexts typically contain
multiple server definitions. PROC STP executes stored processes on a Grid or
CONNECT server that is defined for the specified application server context.

If the SERVER option is not specified, then by default the stored process is
executed remotely on a Grid or CONNECT server that is defined for the SAS
Application Server that was specified in the stored process execution metadata.
If that application server is not available, then the stored process executes
locally.

If SERVER=LOCAL is specified, then the stored process is forced to run locally.
Stored processes that are compatible with SAS 9.2 are always run locally.

If SERVER="server-name" is specified, then for "server-name" you must specify
the name of a SAS Application Server that has a Grid or CONNECT server

154 Chapter 8 / STP Procedure

defined. The server that is specified here takes precedence over server settings
in metadata.

The execution log displays information about which server was used to execute
the stored process.

Examples

Example 1
The following example executes the Hello World stored process and generates an
HTML file that is saved in a local directory:

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Sample: Hello World';
 outputfile _webout="./hello.html";
 run;

Example 2
The following example executes the Multiple Output Formats stored process and
displays the output:

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Sample: Multiple Output Formats' odsout=replay;
 run;

Example 3
The following example executes the Multiple Output Formats stored process and
saves the output:

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Sample: Multiple Output Formats' odsout=store;
 run;

Example 4
The following example executes a stored process that produces a graph and table,
and then replays the output:

proc stp program='/User Folders/johndoe/odstest' odsout=store;
run;

ods html file="./output.html";

PROC STP Statement 155

proc document name=&_ODSDOC (read);
 replay / levels=all;
run;
quit;
ods html close;

The following code shows the odstest.sas stored process:

%stpbegin;
 proc gchart data=sashelp.class;
 vbar age / discrete;
 run; quit;

 proc print data=sashelp.class;
 run; quit;
%stpend;

Example 5
The following example executes two stored processes and replays both documents:

proc stp program='/User Folders/johndoe/procprnt' odsout=store;
run;
%let printdoc=&_ODSDOC;

proc stp program='/User Folders/johndoe/gchart' odsout=store;
run;
%let graphdoc=&_ODSDOC;

ods html file="./output.html";
proc document name=&graphdoc (read);
 replay / levels=all;
run;quit;

proc document name=&printdoc (read);
 replay / levels=all;
run;quit;
ods html close;

The following code shows the gchart.sas stored process:

%stpbegin;
 proc gchart data=sashelp.class;
 vbar age / discrete;
 run; quit;
%stpend;

The following code shows the procprint.sas stored process:

%stpbegin;
proc print data=sashelp.class;
 run; quit;
%stpend;

156 Chapter 8 / STP Procedure

INPUTDATA Statement
Defines input data files for the execution of the stored process.

Syntax
INPUTDATA input-data-source(s) </ <REMOTE> <MEMTYPE=DATA | VIEW |
CATALOG>>;

Required Argument
input-data-source(s)

can have the following form:

stored-process-data-file<=member-name | 'data-set-path'>

stored-
process-
data-file

specifies the name of an input data file. This name
corresponds to an input parameter (macro variable) that is
visible to the stored process program.

member-
name

specifies a one- or two-level name of a SAS data set, view,
or catalog that the stored process can access directly. If the
stored process outputs data to an existing catalog, the
catalog must also be specified as an input data source to
avoid overwriting an entire catalog with what might be only a
few entries created by the stored process.

'data-set-
path'

provides alternate syntax for specifying a data set.

Optional Arguments
REMOTE

specifies that the input data source exists on the remote server. This option is
not supported for local execution.

MEMTYPE=DATA | VIEW | CATALOG
specifies the member type of the input data source. The value that you specify
for this option must match the type of data set that you are accessing. If you do
not specify this option, then either a data set or a data view is used as the input
data source. Valid values are:

DATA specifies that the input data source is a data set.

VIEW specifies that the input data source is a data view.

CATALOG specifies that the input data source is a catalog. If the stored
process accesses a catalog, then the MEMTYPE=CATALOG
option is required.

INPUTDATA Statement 157

Alias MT

Details
The INPUTDATA statement passes a data file that is known within the PROC STP
environment to the stored process environment. Multiple INPUTDATA statements
can be specified in a single procedure call. PROC STP prepends the INPUTDATA
label with _SOURCE_, in order to be compliant with how data sources are handled in
SAS Management Console. If a data set is specified as input for a stored process
and subsequently updated by the stored process, then you must also specify that
data set as an output data set, using the OUTPUTDATA statement. This ensures
that any updates that the stored process makes to the data set are saved in the
data set.

Examples

Example 1
The following SAS code supports the print stored process, which is used in the
following three examples. Notice that in all three of these examples, PROC STP
modifies data1 to be _SOURCE_data1. Within this stored process, PROC PRINT
uses the _SOURCE_data1 reference that is passed in by PROC STP:

%stpbegin;
proc print data=&_SOURCE_data1
run;
%stpend;

The following example passes the data set via a data set path in the local file
system:

proc stp program='/User Folders/johndoe/print' odsout=replay;
 inputdata data1='C:\temp\employees.sas7bdat';
run;

Example 2
The following example passes the data set via a two-level name:

libname dataemps 'C:\temp';

proc stp program='/User Folders/johndoe/print' odsout=replay;
 inputdata data1=dataemps.employees;
run;

158 Chapter 8 / STP Procedure

Example 3
The following example passes the data set via a one-level name. The data set
resides in the WORK library.

proc stp program='/User Folders/johndoe/print' odsout=replay;
 inputdata data1=emps;
run;

Example 4
The following example uses a catalog as the input data file.

proc stp program='/User Folders/johndoe/catalog_contents' odsout=replay;
 inputdata catalog = sashelp.base / mt=catalog;
run;quit;

The following SAS code supports the catalog_contents stored process:

%stpbegin;
proc catalog catalog=&_SOURCE_catalog;
 contents;
run; quit;
%stpend;

INPUTFILE Statement
Defines input files for the execution of the stored process.

Syntax
INPUTFILE input-file(s) </ REMOTE >;

Required Argument
input-file(s)

can have the following form:

stored-process-file<=fileref | 'file-path' | fileref('file')>

stored-
process-file

specifies the name of an input file. This name corresponds
to a fileref that is visible to the stored process program. The
short form of the INPUTFILE statement, INPUTFILE stored-
process-file;, is equivalent to INPUTFILE stored-process-
file=stored-process-file;.

fileref specifies the name of a fileref.

'file-path' specifies the path of a file.

INPUTFILE Statement 159

fileref('file') specifies a fileref of an aggregate storage location and the
name of a file or member, enclosed in parentheses, that
resides in that location. You must have previously
associated the fileref with a file in a FILENAME statement, a
FILENAME function, or an appropriate operating
environment command.

Optional Argument
REMOTE

specifies that the input file exists on the remote server. The stored-process-file
fileref must already exist in the remote server session. This option is required if
the input file does not exist locally. This option is not supported for local
execution.

Details
Multiple INPUTFILE statements can be specified in a single procedure call. If a file
is specified as input for a stored process and subsequently updated by the stored
process, then you must also specify that file as an output file, using the
OUTPUTFILE statement. This ensures that any updates that the stored process
makes to the file are saved in the file.

Examples

Example 1
The following example executes a stored process with three input files,
demonstrating different use cases for the INPUTFILE statement:

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Example Stored Process';
 inputfile file1; /* makes the data from local file1 fileref
 available to the stored process file1
 fileref */
 inputfile file2=myfile; /* makes the data from local myfile fileref
 available to the stored process file2
 fileref */
 inputfile file3="/tmp/data3.csv"; /* makes the /tmp/data3.csv file available
 to stored process file3 fileref */
 ...
 run;

160 Chapter 8 / STP Procedure

Example 2
The following example passes a fileref by its local name:

filename incsv './class.csv';

proc stp program='/User Folders/johndoe/readCSV';
 inputfile incsv;
run;

The stored process readCSV contains the following code:

data work.mydata;
 infile incsv dsd;
 input name $ sex $ age height weight ;
run;

Example 3
You can also pass an input file to a stored process via another name or by using a
file system path. In the following two examples, the stored process accesses the
fileref by the name incsv:

filename localfref 'c:\temp\class.csv';

proc stp program='/User Folders/johndoe/readCSV';
 inputfile incsv=localfref;
run;

Example 4
proc stp program='/User Folders/johndoe/readCSV';
 inputfile incsv='c:\temp\class.csv';
run;

Example 5
The following example passes an input file to a stored process by using aggregate
syntax to specify the filename and location.

filename localfref 'c:\temp';

proc stp program='/User Folders/johndoe/readCSV';
 inputfile incsv = localfref('class.csv');
run;

INPUTFILE Statement 161

INPUTPARAM Statement
Defines input parameters for the execution of the stored process.

Syntax
INPUTPARAM parameter-name-1<="parameter-value-1">

<parameter-name-2<="parameter-value-2"> …>;

Required Argument
parameter-name<="parameter-value">

specifies input parameter names, or specifies input parameters as name/value
pairs where the values are quoted strings. Each name or name/value pair is
converted to a SAS macro, which can be used in the stored process. The
parameter name is the name of the macro variable that contains the parameter
value. The parameter name must be a valid macro variable name and cannot be
longer than 32 characters in length. You can specify a parameter value, as
follows:

"parameter-
value"

specifies the value for the input parameter. The parameter
value can be any string up to 32767 characters in length.
Starting with SAS 9.4M3, if you specify a null value (for
example, inputparam text1="";), then any default value
that was specified for the parameter in metadata is ignored
and the value is null. However, if the metadata specifies that
the parameter requires a non-blank value, then you will
receive an error.

Starting with SAS 9.4M3, you can specify multiple lines of text for the value of
the input parameter. To do this, specify the value in the following format, rather
than using "parameter-value":

('parameter-value-line-1' 'parameter-value-line-2'...)

Note: If an input parameter is defined in metadata, then the INPUTPARAM
values must reconcile with any limitations that have been specified for them in
metadata.

Details
PROC STP cannot display prompts at run time. When you execute stored
processes using PROC STP, you can use the INPUTPARAM statement to provide
prompt values.

162 Chapter 8 / STP Procedure

Examples

Example 1
The following example executes a stored process with various input parameters:

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Example Stored Process';
 inputparam _odsstyle="Blue" _odsdest="PDF" year="2010";
 ...
 run;

Example 2
The following example shows an INPUTPARAM statement without a specified
value. The value of the local variable with the same name is used.

%let testval=23;

proc stp program='/User Folders/johndoe/inparam';
 inputparam testval;
run;

The stored process receives TESTVAL=23. It is the same as if the INPUTPARAM
statement was the following:

Inputparam testval="&testval";

Example 3
An input parameter can also be a range value (for example, a text range, numeric
range, date range, time range, or timestamp range). A range value is used to
specify lower and upper boundaries for a valid value. A valid range therefore always
has two values. A range can be specified with two separate values in the
INPUTPARAM statement, where the lower boundary is specified first.

proc stp program='/User Folders/johndoe/inparam';
 inputparam dtrange=’February 6, 2014’ dtrange=’February 9, 2014’;
run;

When the stored process executes, the lower and upper values are used to limit the
data that is processed. You can also use one parameter with two values that are
separated by —— (two hyphens) as another way to specify the same range.

proc stp program='/User Folders/johndoe/inparam';
 inputparam dtrange=’February 6, 2014 -- February 9, 2014’;
run;

INPUTPARAM Statement 163

Example 4
In the following example, the input parameter x is defined in metadata as a numeric
value that must be within the range of 5-10.

proc stp program='/User Folders/johndoe/inparam';
 inputparam x='4'; /* does not reconcile with metadata */
run;

Because the value specified in the INPUTPARAM statement does not reconcile with
limitations that have been specified in metadata, the stored process does not run. It
returns the following error message:

ERROR: STP: An error occurred preprocessing input parameters:
 com.sas.prompts.InvalidPromptValueException: An error occurred for the
 prompt "x" (values: 4).The value must be greater than or equal to 5.

Example 5
In the following example, INPUTPARAM is overloaded with multiple values:

proc stp program='/User Folders/johndoe/inparam';
 inputparam x='5' x='6' x='7';
run;

The SAS macro variables that are created for the x parameter are as follows:

 X_COUNT 3
 X0 3
 X 5
 X1 5
 X2 6
 X3 7

where the value for each SAS macro variable is described as follows:

X_COUNT specifies the number of duplicate macros.

X0 specifies the number of duplicate macros.

X specifies the value of the first instance of a duplicate macro.

X1 specifies the value of the first duplicate; this value is always the
same as the value for X.

X2 specifies the value of the second duplicate.

X3 specifies the value of the third duplicate.

Xn specifies the value of the nth duplicate.

Note: This is the same strategy for specifying duplicate macros as used in
SAS/IntrNet and the SAS Stored Process Server.

164 Chapter 8 / STP Procedure

Example 6
You can use the INPUTPARAM statement to specify a selection group and
selection-dependent groups. For example, you might have a REGPROD selection
group defined in metadata, with two selection-dependent groups (Territory and
Merchandise) that each have a prompt associated with them (region and product,
respectively). The following image depicts how the parameters appear in SAS
Management Console:

The Selection-Dependent Groups tab in the Edit Group dialog box for the
REGPROD selection group shows that the Merchandise selection-dependent group
is selected by default.

You can use the following INPUTPARAM statements to specify the Territory
selection-dependent group (value is REG) and the region parameter. After a
selection-dependent group (for example, Territory) is specified, you should not
specify a prompt from within a different selection-dependent group (for example,
product).

proc stp program='/User Folders/johndoe/My Stored Process';
 inputparam REGPROD='REG';
 inputparam region=’North America’;
run;

INPUTPARAM Statement 165

LIST Statement
Lists details about the stored process that are specified by the PROGRAM= option.

Syntax
LIST< GROUP=level | (level1 level2 ...)>;

Optional Argument
GROUP=level | (level1 level2 ...)

specifies the level of detail that is listed about the stored process that is specified
by the PROGRAM= option. The stored process is not executed. Specify one or
more of the following levels:

GENERAL specify this level in order to view a list that contains the
following details: stored process name, description,
creation date, modification date, keywords, responsible
parties.

EXECUTION specify this level in order to view a list that contains the
following details: logical server, source in metadata,
source code repository, result type.

INPUTPARAM specify this level in order to view a list that contains a list
of input parameters for this stored process that are
defined in metadata or are defined via an INPUTPARAM
statement in PROC STP. Some input parameters, such
as _METAPERSON, _METAUSER, and _CLIENT, are
automatically defined in metadata without user input.

OUTPUTPARAM specify this level in order to view a list that contains
details about output parameters that are defined in
metadata.

INPUTDATA specify this level in order to view a list that contains
details about input data streams that are defined in
metadata.

OUTPUTDATA specify this level in order to view a list that contains
details about output data streams that are defined in
metadata.

Details
The LIST statement displays the metadata attributes of the stored process that is
specified in the PROGRAM= option of the PROC STP statement. These attributes

166 Chapter 8 / STP Procedure

are displayed in the SAS log. The stored process does not run when the LIST
statement is used.

Examples

Example 1
The following example uses the GROUP=GENERAL option with the LIST
statement:

proc stp program='/User Folders/johndoe/myStoredProcess';
 list group=general;
run;

The following output is displayed in the SAS log:

NOTE: PROC_STP: ====== Metadata Listing for /Users/johndoe/procstp/myStoredProcess
======
NOTE: Stored Process Name: myStoredProcess
NOTE: Description: Stored Process description to demonstrate the List
statement.
NOTE: Creation Date: 21Dec2010:14:58:53
NOTE: Modification Date: 21Dec2010:14:58:53
NOTE: Keywords: demo
NOTE: list
NOTE: Responsible Parties: sasadm
NOTE: sasdemo

Example 2
The following example uses the GROUP=EXECUTION option with the LIST
statement:

proc stp program='/User Folders/johndoe/myStoredProcess';
 list group=execution;
run;

The following output is displayed in the SAS log:

NOTE: PROC_STP: ====== Metadata Listing for /Users/johndoe/procstp/myStoredProcess
======
NOTE: Server Context: johndoe
NOTE: Stored Process code may run on any available server
NOTE: Execution required to be on johndoe application server only
NOTE: Source Code Repository: c:\johndoe\progs
NOTE: Source File: myStoredProcess.sas
NOTE: Result Type: Packages No
NOTE: Streaming Yes

LIST Statement 167

Example 3
The following example uses the GROUP=INPUTPARAM option with the LIST
statement:

proc stp program='/User Folders/johndoe/myStoredProcess';
 list group=inputparam;
 inputparam y=2;
run;

The following output is displayed in the SAS log:

NOTE: PROC_STP: ====== Metadata Listing for /Users/johndoe/procstp/myStoredProcess
======
NOTE: Input Parameters: x = 5
NOTE: Y = 2
NOTE: _result = STREAM
NOTE: _metaperson = sasadm
NOTE: _metauser = sasadm@saspw
NOTE: _client = PROCSTP; TKESTP; JVM 1.6.0_21;
Windows XP (x86)
 5.1

Example 4
The following example uses the GROUP=OUTPUTPARAM option with the LIST
statement:

proc stp program='/User Folders/johndoe/myStoredProcess';
 list group=outputparam;
run;

The following output is displayed in the SAS log:

NOTE: PROC_STP: ====== Metadata Listing for /Users/johndoe/procstp/myStoredProcess
======
NOTE: Output Parameters: results Integer
NOTE: mean Double

Example 5
The following example uses the GROUP=INPUTDATA option with the LIST
statement:

proc stp program='/User Folders/johndoe/myStoredProcess';
 list group=inputdata;
run;

The following output is displayed in the SAS log:

168 Chapter 8 / STP Procedure

NOTE: PROC_STP: ====== Metadata Listing for /Users/johndoe/procstp/myStoredProcess
======
NOTE: InputData Sources available:
NOTE: Source: Generic Fileref: istream
NOTE: Label: instream
NOTE: Expected content type: application/unknown
NOTE: Description: Input data stream for stored process
NOTE: Allow rewinding stream: Yes

Example 6
The following example uses the GROUP=OUTPUTDATA option with the LIST
statement:

proc stp program='/User Folders/johndoe/myStoredProcess';
 list group=outputdata;
run;

The following output is displayed in the SAS log:

NOTE: PROC_STP: ====== Metadata Listing for /Users/johndoe/procstp/myStoredProcess
======
NOTE: OutputData Sources available:
NOTE: Target: Data Table Table Parameter: class
NOTE: Label: class
NOTE: Description: Output data table from stored process
execution

Example 7
The following example shows how to use multiple options with the LIST statement:

proc stp program='/User Folders/johndoe/myStoredProcess';
 list group=(general execution inputparam outputdata);
run;

Example 8
When the LIST statement has no arguments, it is functionally equivalent to having
all the group options set. So the following two LIST invocations produce the same
output:

proc stp program='/User Folders/johndoe/myStoredProcess';
 list;
run;

proc stp program='/User Folders/johndoe/myStoredProcess';
 list group=(general execution inputparam outputparam inputdata outputdata);
run;

LIST Statement 169

LOG Statement
Controls the location of the stored process log.

Syntax
LOG FILE=local-fileref | local-file-path | local-fileref('file');

Required Argument
FILE=local-fileref | local-file-path | local-fileref('file')

specifies the filename and location for the stored process log. Specify either an
explicit local path, ending with the filename for the log, or specify a local fileref.
You can also specify a fileref of an aggregate storage location and the name of a
file or member, enclosed in parentheses, that resides in that location. To use
aggregate syntax, you must have previously associated the fileref with a file in a
FILENAME statement, a FILENAME function, or an appropriate operating
environment command.

Details
The LOG statement enables the user to direct the PROC STP and stored process
log to an external file. Without the LOG statement, the PROC STP logging
messages go to the standard SAS output location.

Examples

Example 1
proc stp program='/User Folders/johndoe/myStoredProcess';
 log file = 'c:\johndoe\logs\procstp.txt';
run;

Example 2
filename mylogf 'C:\johndoe\logs\filereflog.txt';

proc stp program='/User Folders/johndoe/myStoredProcess';

170 Chapter 8 / STP Procedure

 log file = mylogf;
run;

Example 3
The following example uses aggregate syntax to specify the filename and location
for the stored process log.

filename mylogf 'C:\johndoe\logs';

proc stp program='/User Folders/johndoe/myStoredProcess';
 log file = mylogf('filereflog.txt');
run;

OUTPUTDATA Statement
Defines output data files that are produced by the execution of the stored process.

Syntax
OUTPUTDATA output-data-target(s) </ <REMOTE> <MEMTYPE=DATA |
CATALOG>>;

Required Argument
output-data-target(s)

can have the following form:

stored-process-data-file<=member-name | 'data-set-path'>

stored-
process-
data-file

specifies the name of an output data file. This name
corresponds to an output parameter (macro variable) that is
visible to the stored process program.

member-
name

specify a one- or two-level name of a SAS data set or
catalog that the stored process can access directly. If the
stored process outputs data to an existing catalog, the
catalog must also be specified as an input data source to
avoid overwriting an entire catalog with what might be only a
few entries created by the stored process.

'data-set-
path'

provide alternate syntax for specifying a data set.

OUTPUTDATA Statement 171

Optional Arguments
REMOTE

creates or updates the output data target on the remote server. If specifying a
member-name with a libref, that libref must already exist in the remote server
session. This option is not supported for local execution.

MEMTYPE=DATA | CATALOG
specifies the member type of the output data target. The value that you specify
for this option must match the type of data set that you are accessing. If you do
not specify this option, then a data set is used as the output data target. Valid
values are:

DATA specifies that the output data target is a data set.

CATALOG specifies that the output data target is a catalog. If the stored
process accesses a catalog, then the MEMTYPE=CATALOG
option is required.

Alias MT

Details
Multiple OUTPUTDATA statements can be specified in a single procedure call.
PROC STP prepends the OUTPUTDATA label with _TARGET_, in order to be
compliant with how data targets are handled in SAS Management Console.

Examples

Example 1
The following example executes a stored process with two output data files,
demonstrating different use cases for the OUTPUTDATA statement:

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Example Stored Process';
 outputdata data1=mylib.mydata; /* output data file data1 is
 created as mylib.mydata */
 outputdata data3="/tmp/mydata.sas7bdat"; /* output data file data3 is
 created at the specified
 path */
 ...
 run;

172 Chapter 8 / STP Procedure

Example 2
The following example shows the interaction between PROC STP and the stored
process:

/* Create a libref in the proc stp environment */
libname mylib 'c:\johndoe\temp';

/* Run a stored process that creates a dataset */
proc stp program='/User Folders/johndoe/createData';
 /* Pass in a reference, "outdata" to the dataset */
 outputdata outdata=mylib.employees;

run;

/* After the stored process creates the dataset,
 print it in our local environment */
proc print data=mylib.employees;
 Title 'Our Employees';
run;quit;

The following code is the createData stored process that creates the data set.
Notice that in this example, PROC STP has modified outdata to be
_TARGET_outdata. Within this stored process, the code uses the
_TARGET_outdata data set reference that was passed in by PROC STP:

data &_TARGET_outdata;
 length First_Name $8 Last_Name $9 Job_Title $8;
 input First_Name $ Last_Name $
 Job_Title $ Salary;
 datalines;
Joshua Alexander Auditor 41423
Gabriel Ryan Trainee 26018
Eileen Joy Manager 55236
Richard Collier CEO 75000
;
run;

Example 3
The following example uses the PROC STP WORK library with the OUTPUTDATA
statement:

/* Run a stored process that creates a dataset */
proc stp program='/User Folders/johndoe/createData';
 /* Pass in a reference, "outdata" to the dataset */
 outputdata outdata=work.employees;

run;

/* After the stored process creates the dataset,
 print it in our local environment */
proc print data=work.employees;
 Title 'Our Employees';
run;quit;

OUTPUTDATA Statement 173

OUTPUTFILE Statement
Defines output files that are produced by the execution of the stored process.

Syntax
OUTPUTFILE output-file(s) </ REMOTE >;

Required Argument
output-file(s)

can have the following form:

stored-process-file<=fileref | 'file-path' | fileref('file')>

stored-
process-file

specifies the name of an output file. This name corresponds
to a fileref that is visible to the stored process program. The
short form of the OUTPUTFILE statement, OUTPUTFILE
stored-process-file;, is equivalent to OUTPUTFILE stored-
process-file=stored-process-file;.

fileref specifies the name of a fileref.

'file-path' specifies the path of a file.

fileref('file') specifies a fileref of an aggregate storage location and the
name of a file or member, enclosed in parentheses, that
resides in that location. You must have previously
associated the fileref with a file in a FILENAME statement, a
FILENAME function, or an appropriate operating
environment command.

Optional Argument
REMOTE

creates or updates the output file on the remote server. The stored-process-file
fileref must already exist in the remote server session. This option is not
supported for local execution.

Details
Multiple OUTPUTFILE statements can be specified in a single procedure call.

174 Chapter 8 / STP Procedure

Examples

Example 1
The following example executes a stored process with three output files,
demonstrating different use cases for the OUTPUTFILE statement:

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Example Stored Process';
 ...
 outputfile file1; /* makes the data from stored process file1
 fileref available to local file1 fileref */
 outputfile file2=myfile; /* makes the data from stored process file2
 fileref available to local myfile fileref */
 outputfile file3="/tmp/data3.csv"; /* makes the data from stored process file3
 fileref available to the specified local
 file */
 ...
 run;

Example 2
The following example writes stored process output to a file by using a local file
path:

proc stp program='/User Folders/johndoe/hello';
 outputfile _webout='c:\johndoe\data\hello.html';
run;

The stored process writes HTML code to the _WEBOUT fileref that is passed in by
PROC STP:

data _null_;
 file _webout;
 put '<HTML>';
 put '<HEAD><TITLE>Hello World!</TITLE></HEAD>';
 put '<BODY>';
 put '<H1>Hello World!</H1>';
 put '</BODY>';
 put '</HTML>';
run;

Example 3
The following example uses a local fileref with the same name as the reference in
the stored process:

filename _webout 'c:\johndoe\data\hello.html';

proc stp program='/User Folders/johndoe/hello';

OUTPUTFILE Statement 175

 outputfile _webout;
run;

Example 4
The following example uses a local fileref with a different name from the reference in
the stored process:

filename myfile 'c:\johndoe\data\hello.html';

proc stp program='/User Folders/johndoe/hello';
 outputfile _webout=myfile;
run;

Example 5
The following example uses aggregate syntax to specify the filename and location
for the output file.

filename localfref 'c:\johndoe\data';

proc stp program='/User Folders/johndoe/hello';
 outputfile hello = localfref('hello.html');
run;

OUTPUTPARAM Statement
Defines output parameters that are produced by the execution of the stored process.

Syntax
OUTPUTPARAM parameter-name-1<="local-variable-name-1">
<parameter-name-2<="local-variable-name-2"> …>;;

Required Argument
parameter-name<="local-variable-name">

specifies output parameter names, or specifies output parameters as name/
value pairs where the values are local macro variables. Each name or name/
value pair is converted to a SAS macro variable, which can be used in the stored
process. The parameter name is the name of the macro variable that contains
the parameter value. The parameter name must be a valid macro variable name
and cannot be longer than 32 characters in length. You can specify the name of
a local macro variable, as follows:

176 Chapter 8 / STP Procedure

local-
variable-
name

specifies the name of a local macro variable that contains the
output parameter value. The macro variable is set to the output
parameter value at the completion of stored process
execution. If local-variable-name is omitted, the parameter
name is used as the local variable name. The local variable is
not set if the stored process fails to set an output parameter
value.

Details
The OUTPUTPARAM statement identifies macro variables within the stored process
environment to retrieve and use in the PROC STP SAS session. You can also
create local macro variables within the PROC STP SAS session and assign the
stored process output parameter to it.

Examples

Example 1
The following example retrieves the resultValue macro variable from the stored
process environment and uses it in the PROC STP session. The stored process,
outputparam, contains the following code:

…
%let tempVal = 5;
%let tempVal2 = 10;

%global resultValue;
%let resultValue = %eval(&tempVal2 + &tempVal);
…

The following PROC STP code is used in the SAS session:

proc stp program='/User Folders/johndoe/outparam';
 outputparam resultValue;
run;

/* After PROC STP runs, resultValue is set in the stored process
 and is available in the local SAS environment */
%put NOTE: The Stored Process set resultValue=&resultValue;

The following message appears in the SAS log:

NOTE: The Stored Process set resultValue=15

OUTPUTPARAM Statement 177

Example 2
The following example retrieves the resultValue macro variable from the stored
process environment and assigns it to a local variable in the SAS session:

proc stp program='/User Folders/johndoe/outparam';
 outputparam resultValue=myLocalResult;
run;

%put NOTE: The SAS Session local macro myLocalResult=&myLocalResult;

The following message appears in the SAS log:

NOTE: The SAS Session local macro myLocalResult=15

Example: Generating an ODS Document
File STP Procedure

Example 1: Generating an ODS Document File
Features: PROC STP statement options

PROGRAM=
ODSOUT=

PROC DOCUMENT statement options
NAME=

REPLAY statement
System options

METASERVER
METAPORT
METAUSER
METAPASS

ODS _ALL_ CLOSE statement
ODS HTML statement
GOPTIONS statement

ODS
destinations:

DOCUMENT, HTML

178 Chapter 8 / STP Procedure

Details
This sample code is intended to be executed in an interactive or batch SAS session.
You need to specify metadata connection information so that your SAS session
connects to the metadata server that contains the "Cholesterol by Sex and Age
Group" stored process sample.

Starting with SAS 9.3, stored process source code can be stored on the SAS
Metadata Server. The SAS source code for this stored process is stored in
metadata. Storing source code in metadata is recommended for stored processes
that are run using PROC STP. The source code must be stored in a location that is
accessible to the server session.

Program
ods _all_ close;

options metaserver = 'your-metadata-server'
 metaport = your-metadata-server-port
 metauser = 'your-userid'
 metapass = 'your-password';

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Sample: Cholesterol by Sex and Age Group'
odsout=store;
run;

goptions device=png;

ods html path='your-output-directory' file='test.htm' style=HTMLBlue;
 proc document name=&_ODSDOC (read);
 replay / levels=all;
 run;

ods html close;

Program Description
Close all open ODS destinations. The ODS _ALL_ CLOSE statements closes all
open destinations.

ods _all_ close;

Provide connection information to the metadata server where the stored
process is registered. The METASERVER= option specifies the host name or
address of the metadata server, the METAPORT= option specifies the TCP port for
the metadata server, the METAUSER= option specifies the user ID for connecting to
the metadata server, and the METAPASS= option specifies the password for the
metadata server.

Example 1: Generating an ODS Document File 179

options metaserver = 'your-metadata-server'
 metaport = your-metadata-server-port
 metauser = 'your-userid'
 metapass = 'your-password';

Execute the stored process and generate a destination- and device-
independent ODS Document file. The two-level name of the ODS Document file is
stored in the _ODSDOC reserved macro variable, and this document is replayed
using the DOCUMENT procedure. The stored process source code is stored in
metadata.

proc stp program='/Products/SAS Intelligence Platform/Samples/
 Sample: Cholesterol by Sex and Age Group'
odsout=store;
run;

Specify the graphics device for the output. The GOPTIONS DEVICE=PNG
statement specifies PNG as the graphics device.

goptions device=png;

Use PROC DOCUMENT to create an HTML file containing the output of the
stored process. The ODS HTML statement creates your file in your directory and
applies the HTMLBlue style. The DOCUMENT procedure replays the stored process
output. For more information about PROC DOCUMENT, see “DOCUMENT
Procedure” in SAS Output Delivery System: Procedures Guide.

ods html path='your-output-directory' file='test.htm' style=HTMLBlue;
 proc document name=&_ODSDOC (read);
 replay / levels=all;
 run;

Close the HTML destination and then view the HTML file using a web browser.

ods html close;

180 Chapter 8 / STP Procedure

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n0lzw11swn9gm8n1g6rof0r360wr.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n0lzw11swn9gm8n1g6rof0r360wr.htm&locale=en

Appendix 1
Stored Process Software
Requirements

General Requirements . 181

Client-Specific Requirements . 181

Components . 182

General Requirements
To manage and execute SAS Stored Processes for any client environment, you
must have the following components installed:

n SAS software

n SAS Management Console

For general information about installing each of these components, see
“Components” on page 182.

Client-Specific Requirements
Stored processes can be accessed from many different client environments.
Software requirements vary depending on the client environment.

To use SAS Stored Processes in a web application environment, the following
components are recommended:

n Java Runtime Environment (JRE) or Java Development Kit (JDK)

n servlet container

181

n SAS Web Infrastructure Platform

To use SAS Stored Processes in a Java application, the following components are
required:

n Java Development Kit (JDK)

n servlet container (for servlets or JSPs only)

To access SAS Stored Processes from Microsoft Office, the following component is
required:

n SAS Add-In for Microsoft Office

To access SAS Stored Processes from a web services client, install the following
component:

n SAS BI Web Services

To author SAS Stored Processes in a task-oriented user interface, install the
following component:

n SAS Enterprise Guide

You can install all of the components on a single system or install them across
multiple systems. A development system might have all of the components on a
single desktop system, while a production system might have SAS installed on one
or more systems, a servlet container installed on another system, and client
software installed on multiple client desktop systems. For specific requirements
about host platforms, see the product documentation for the individual components.

For general information about installing each of these components, see
“Components” on page 182.

Components
SAS software

Install SAS 9.4 on your designated SAS server. You must install Base SAS and
SAS Integration Technologies in order to run stored processes. SAS/GRAPH
software is required to run some of the sample stored processes. Install any
other products that are used by your stored processes. You must also configure
a SAS Metadata Server in order to create and use stored processes. You must
configure one or more stored process servers or workspace servers in order to
execute stored processes.

SAS Management Console
Install SAS Management Console on any system with network access to your
SAS server.

Java Runtime Environment (JRE)
The Java interface to SAS Stored Processes requires the Java 2 Runtime
Environment (JRE), Standard Edition. For information about the specific version
required for your operating environment, see the installation instructions for SAS
Management Console. Some development environments and servlet containers
include a copy of the appropriate version of the Java 2 JRE. If you need a copy,
you can download it from the Third-Party software CD in the SAS Installation Kit.
If you are developing Java applications or creating Java Server Pages (JSPs),

182 Appendix 1 / Stored Process Software Requirements

then you also need the Java 2 Software Development Kit (SDK), which includes
a copy of the Java 2 JRE.

Java Development Kit (JDK)
Java developers or servlet containers that execute Java Server Pages (JSPs)
require the Java 2 Software Development Kit (SDK), Standard Edition. For
information about the specific version required for your operating environment,
see the installation instructions for SAS Management Console. Some
development environments and servlet containers include a copy of the
appropriate version of the Java 2 SDK. If you need a copy, you can download it
from the Third-Party software CD in the SAS Installation Kit.

Servlet Container
A servlet container is a Java server that can act as a middle-tier access point to
SAS Stored Processes. A servlet container can be used to host the SAS Web
Infrastructure Platform or user-written servlets or Java Server Pages. For
specific servlet container requirements for the SAS Web Infrastructure Platform,
see the product documentation. Servlet containers used for user-written servlets
or JSPs must include a JRE version that is compatible with the SAS 9.4
requirements for the operating environment. SAS Web Application Server is the
supported servlet container for SAS 9.4

SAS Web Infrastructure Platform
The SAS Web Infrastructure Platform is installed on a servlet container and
includes the SAS Stored Process Web Application. This web application enables
you to execute stored processes from a web browser or other web client.

SAS Add-In for Microsoft Office
SAS Add-In for Microsoft Office must be installed on a client Windows system in
order to execute stored processes from Microsoft Office on that system. The
SAS Integration Technologies client for Windows must also be installed on the
same system.

SAS BI Web Services for Java
SAS BI Web Services requires that several other components be installed,
including the SAS Web Infrastructure Platform. For more information about
required components, see the installation instructions for SAS BI Web Services.

SAS Enterprise Guide
SAS Enterprise Guide is a Microsoft Windows client application that can be
installed on any system that has network access to your SAS server.

Components 183

184 Appendix 1 / Stored Process Software Requirements

Appendix 2
Converting SAS/IntrNet
Programs to SAS Stored
Processes

Overview . 185

Compatibility Features . 186

Conversion Considerations . 187
Overview of Conversion Considerations . 187
HTTP Headers . 187
Macro Variables . 187
Code Differences . 188

Overview of Conversion Steps . 190

Example . 191
Sample Environment . 191
About the Application Dispatcher Program . 191
Converting the Application Dispatcher Program to a Stored Process 195
Adding a Parameter to the Stored Process Definition . 203

Executing Catalog Entries . 206

Overview
To fully use the capabilities of the SAS®9 Enterprise Intelligence Platform, you can
convert existing SAS/IntrNet applications into SAS Stored Processes. Many features
are implemented in the SAS Stored Process Server and the SAS Stored Process
Web Application to minimize the code changes that are required during a
conversion. Existing SAS/IntrNet Application Dispatcher programs can usually be
converted to streaming stored processes with minimal or no modifications. This

185

appendix explains how to perform such a conversion and discusses some of the
differences between Application Dispatcher programs and stored processes.

SAS/IntrNet Application Dispatcher programs execute very much like a stored
process web application. Although Application Dispatcher is only one component of
SAS/IntrNet, applications that use Application Dispatcher are the most likely
candidates for conversion to stored processes, because these applications execute
SAS programs with features that are very similar to stored processes. This appendix
focuses only on the conversion of Application Dispatcher programs to stored
processes.

SAS/IntrNet continues to be supported, but the stored process framework is a new
architecture designed specifically for the SAS®9 platform.

You should convert SAS/IntrNet applications to use stored processes if you want to
use the following features:

n SAS programs in other clients, such as SAS Enterprise Guide, SAS Web Report
Studio, or Microsoft Office applications

n the common security model that is provided by metadata

n the centralized administration that is provided by metadata integration and SAS
Management Console

Note: This appendix focuses on converting SAS/IntrNet programs to stored
processes that run in the SAS Stored Process Web Application. If you want to run
these programs in other stored process clients (such as SAS Web Report Studio or
the SAS Add-In for Microsoft Office), there might be additional configuration issues.
Each client application has its own requirements for stored process behavior.

Compatibility Features
The following features describe similarities between Application Dispatcher and
stored processes:

n The SAS Stored Process Web Application (a component of the SAS Web
Infrastructure Platform) provides the middle-tier equivalent of the Application
Broker. The SAS Stored Process Web Application requires a servlet container
such as SAS Web Application Server. For other requirements, see the SAS Web
Infrastructure Platform installation instructions.

n The SAS Stored Process Server (a component of SAS Integration Technologies)
provides the equivalent of the SAS/IntrNet Application Server. The typical stored
process server configuration (a load-balanced cluster) is very similar in
functionality to a SAS/IntrNet pool service. New servers are started as demand
increases to provide a highly scalable system.

n Streaming output from a stored process is written to the _WEBOUT fileref. The
underlying access method has changed, but the functionality is very similar to
the functionality of SAS/IntrNet. ODS, HTML Formatting Tools, DATA step code,
or SCL programs can continue to write output to _WEBOUT.

n The Application Server functions (APPSRVSET, APPSSRVGETC,
APPSRVGETN, APPSRV_HEADER, APPSRV_SESSION, and

186 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

APPSRV_UNSAFE) are supported in stored processes except as noted in the
"Conversion Considerations" section. In many cases, equivalent STPSRV
functions are recommended for new programs.

n The _REPLAY mechanism is supported by the stored process server. The value
of the _REPLAY URL has changed, but this does not affect most programs.

n The SAS/IntrNet sessions feature has been implemented by the stored process
server. The same SAVE library, session macro variables, and session lifetime
management functions are available in stored processes.

Conversion Considerations

Overview of Conversion Considerations
There are a number of differences in the stored process server environment that
might affect existing SAS/IntrNet programs. Use the items in the following sections
as a review checklist for your existing programs.

HTTP Headers
n In SAS Stored Processes, HTTP headers cannot be written directly to

_WEBOUT by using a DATA step PUT statement or SCL FWRITE function. You
must use the STPSRV_HEADER (or APPSRV_HEADER) function to set header
values. Automatic header generation cannot be disabled with
appsrvset("automatic headers", 0).

n SAS/IntrNet programs require that HTML Formatting Tools use the
RUNMODE=S option, which writes an HTML header directly to _WEBOUT. For
stored process programs, you should change the option to RUNMODE=B, or an
extra header line appears in the output.

Macro Variables
n Unsafe processing is different for stored processes; there is no UNSAFE option.

Unsafe characters (characters that cause unwanted macro language processing)
are quoted instead of removed from the input parameters, so you can safely use
the &VAR syntax without worrying about unsafe characters. The following
examples work without using the APPSRV_UNSAFE function:

%if &MYVAR eq %nrstr(A&P)
%then do something...;

Here is another example:

Conversion Considerations 187

data
null;
file _webout;
put "MYVAR=&MYVAR";
run;

APPSRV_UNSAFE works in the stored process server and still returns the
complete, unquoted input value. This change might cause subtle behavioral
differences if your program relies on the SAS/IntrNet unsafe behavior. For stored
processes, use the STPSRV_UNQUOTE2 function instead.

n The _REPLAY macro variable does not have the same syntax in stored
processes as it did in Application Dispatcher. References to &_REPLAY are not
recommended for SAS/IntrNet programs, but they can be used in stored
processes. The DATA step function symget('_REPLAY') does not return a
usable URL in a stored process and should be replaced with "&_REPLAY". For
example:

url =
symget('_REPLAY')...;

should be changed to

url =
%str(&_REPLAY)...;

However, if you were already using %str(&_REPLAY) in SAS/IntrNet, then no
change is necessary.

n The _SERVICE, _SERVER, and _PORT macro variables do not exist for stored
processes. You must review any code that uses these macro variables. Usually,
they are used to create drill-down URLs or forms. In many cases, this code does
not require any change; input values for these variables are ignored.

n In stored processes, _PROGRAM refers to a stored process path and name in
the metadata repository folder structure, and not a three-level or four-level
program name. Any programs that create drill-down links or forms with
_PROGRAM must generally be modified to use the stored process path.

Code Differences
n The stored process server cannot directly execute SOURCE, MACRO, or SCL

catalog entries. You must use a wrapper .sas source file to execute the catalog
entry.

n Instead of using an ALLOCATE LIBRARY or ALLOCATE FILE statement to
assign a library, as you can do in SAS/IntrNet, you must assign a library in one
or more of the following ways:

o using the Data Library Manager plug-in for SAS Management Console

o using the server start-up command or the SAS config file

o using a SAS autoexec file

For more information about how to assign libraries, see the SAS Intelligence
Platform: Data Administration Guide.

n There is no REQUEST TIMEOUT functionality in stored processes;
appsrvset('request timeout') is not supported.

188 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

n The Application Server functions APPSRV_AUTHCLS, APPSRV_AUTHDS, and
APPSRV_AUTHLIB are not supported in stored processes. There are no
STPSRV functions that are equivalent to these Application Server functions.

n Stored processes do not support the SESSION INVSESS automatic user exit
program. Similar functionality can be implemented in the SAS Stored Process
Web Application through a custom web interface.

n AUTH=HOST functionality is not supported by the stored process server. In
Application Dispatcher, this functionality provides the ability for the program to
run under the operating system permissions of the client user.

n If you are writing to _WEBOUT by using PUT statements while ODS has
_WEBOUT open, when you execute the code the PUT statement data might be
out of sequence with the data that is generated by ODS. This problem occurs
with both SAS/IntrNet applications and stored processes. It tends to be more of
an issue if you are upgrading from SAS 8 to SAS®9. This problem occurs
because both your code and ODS are opening the same fileref at the same time.
For example, the following code might not always work as expected:

ods listing close;
ods html body=_webout path=&_tmpcat
(url=&_replay) Style=Banker;
... other code ...
data _null_;
file _webout;
put '<p align="center"> </p>' ;
put '<p align="center">Test.
If you see this in order, it worked.</p>';
run;
... other code ...
ods html close;

This code might work in some SAS/IntrNet programs, but it can cause problems
with the order of data even in SAS/IntrNet. This code is more likely to fail in a
stored process. This problem can be fixed by inserting PUT statements before
you open ODS, closing ODS while you write directly to the fileref, or using the
ODS HTML TEXT="string" option to write data. The following code is an example
of how you can both close ODS while you write directly to the fileref, and insert
your PUT statements before you open ODS:

ods html
body=_webout
(no_bottom_matter)...;
... other code ...
ods html close;

data _null_;
file _webout;
put '<p align="center"> </p>' ;
put '<p align="center">Test.
If you see this in order, it worked.</p>';
run;

ods html body=_webout (no_top_matter)...;
... other code ...
ods html close;

Conversion Considerations 189

The following code is an example of how you can use the ODS HTML
TEXT="string" option to write data:

ods
listing
close;
ods html body=_webout path=&_tmpcat
(url=&_replay) Style=Banker;
... other code ...
ods html text='<p align="center"> </p>' ;
ods html text='<p align="center">Test.
If you see this in order, it worked.</p>';
... other code ...
ods html close;

Overview of Conversion Steps
To convert existing SAS/IntrNet programs to stored processes, perform the following
steps:

1 Install and configure the SAS Web Infrastructure Platform, a component of SAS
Integration Technologies that includes the SAS Stored Process Web Application,
which is used to emulate the Application Broker.

2 Copy the program to a valid source code repository for a stored process server.

Note: Starting with SAS 9.3, you can store source code in the stored process
metadata rather than on the application server. To do this, when you register the
stored process metadata, click Edit Source Code in the New Stored Process
wizard or the Execution tab of the Stored Process Properties dialog box. Copy
and paste the code into the buffer provided.

3 Modify the program as required to address the items discussed in the
Conversion Considerations. For more information, see “Conversion
Considerations” on page 187.

4 Register the stored process using the New Stored Process wizard in SAS
Management Console.

5 Modify the HTML for any custom input forms. Also, convert any HTML pages
that link to your stored process to use the SAS Stored Process Web Application
URL syntax.

6 Run the stored process.

190 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

Example

Sample Environment
The following software makes up the environment for this example:

n The web server for the SAS/IntrNet portion of the example is Microsoft Internet
Information Services (IIS) 6.0.

n SAS Web Application Server is the servlet container that is being used for this
example.

n SAS 9.4

n SAS Stored Process Server (as opposed to the SAS Workspace Server)

n Windows middle tier

n Windows SAS server tier

About the Application Dispatcher Program

The Program Component
The example in this appendix uses ODS and the TABULATE procedure to display
shoe sales data for a selected region. Here is the SAS code:

%global regionname;

ods listing close;
ods html body=_webout;

proc tabulate data = sashelp.shoes format = dollar14.;
title "Shoe Sales for ®ionname";
 where (product =: 'Men' or product =: 'Women') & region="®ionname";
 table Subsidiary all,
 (Product='Total Product Sales' all)*Sales=' '*Sum=' ';
 class Subsidiary Product;
 var Sales;
 keylabel All='Grand Total'
 Sum=' ';
run;

ods html close;

Example 191

For the sake of illustration, assume that this SAS code is stored in the location
C:\MySASFiles\intrnet\webtab1.sas.

The Input Component
The following HTML is the body for the input component, which is the physical
HTML file. For the sake of illustration, assume that this HTML is stored in a file
named webtab1.html.

<H1>Regional Shoe Sales</H1>
<p>Select a region in order to display shoe sales data for that
region by subsidiary and style. This sample program uses ODS and
the TABULATE procedure.</p>

<HR>

<FORM ACTION="/sasweb/cgi-bin/broker.exe">
<INPUT TYPE="HIDDEN" NAME="_SERVICE" VALUE="default">
<INPUT TYPE="HIDDEN" NAME="_PROGRAM" VALUE="intrnet.webtab1.sas">

Select a region: <SELECT NAME="regionname">
<OPTION VALUE="Africa">Africa
<OPTION VALUE="Asia">Asia
<OPTION VALUE="Central America/Caribbean">Central America/Caribbean
<OPTION VALUE="Eastern Europe">Eastern Europe
<OPTION VALUE="Middle East">Middle East
<OPTION VALUE="Pacific">Pacific
<OPTION VALUE="South America">South America
<OPTION VALUE="United States">United States
<OPTION VALUE="Western Europe">Western Europe
</SELECT>

<HR>
<INPUT TYPE="SUBMIT" VALUE="Execute">
<INPUT TYPE="CHECKBOX" NAME="_DEBUG" VALUE="131">Show SAS Log

</FORM>

The input component looks like the one shown in the following display.

192 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

Figure A4.1 Application Dispatcher Input Component

You can select a region from the list and click Execute to display a table of sales
data for that region. When you click Execute, Application Dispatcher executes the
program and sends the results back to the web browser. The results look like the
program output shown in the following display.

Example 193

Figure A4.2 Application Dispatcher Program Output

The HTML form created the following URL for the results page, based on the default
selections in the input form:

http://myserver/sasweb/cgi-bin/broker.exe?
_SERVICE=default&_PROGRAM=intrnet.webtab1.sas®ionname=Africa

The URL is typically built for you by the web browser which uses fields in an HTML
form. The HTML page uses the following FORM tag to submit the program to the
Application Broker:

<FORM ACTION="/sasweb/cgi-bin/broker.exe">

194 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

The following hidden fields are used to create name/value pairs to complete the
required syntax:

<INPUT TYPE="HIDDEN" NAME="_SERVICE" VALUE="default">
<INPUT TYPE="HIDDEN" NAME="_PROGRAM" VALUE="intrnet.webtab1.sas">

Notice that the value for _PROGRAM is set to intrnet.webtab1.sas. This first level
indicates that the program is stored in a directory identified by the intrnet fileref. The
next two levels (webtab1.sas) provide the name of the program that is executed.

Note: Several samples are shipped with Application Dispatcher, and you can use
these samples to practice the conversion to stored processes. (Some of these
samples have already been converted to stored process samples, and these
samples are installed with SAS Integration Technologies.) You can execute the
Application Dispatcher samples from the following URL:
http://myserver/sasweb/IntrNet9/dispatch/samples.html

Converting the Application Dispatcher Program to a
Stored Process

Step 1: Copy the Source Program
To preserve the functionality of the original SAS/IntrNet example, copy the SAS
program to a new location before modifying it. Copy the webtab1.sas program from
C:\MySASFiles\intrnet to a location on the stored process server, such as
C:\MySASFiles\storedprocesses.

Note: Starting with SAS 9.3, you can store source code in the stored process
metadata rather than on the application server. To do this, when you register the
stored process metadata, click Edit Source Code in the New Stored Process
wizard or the Execution tab of the Stored Process Properties dialog box. Copy and
paste the code into the buffer provided.

Step 2: Modify the Program as Needed
1 Open the new copy of webtab1.sas to check for conversion considerations.

%global regionname;

ods listing close;
ods html body=_webout;

* PROC TABULATE code here;

Example 195

ods html close;

2 Note that the program is already writing to _WEBOUT, so %STPBEGIN and
%STPEND are not needed. However, replacing the ODS HTML statement with
%STPBEGIN and %STPEND makes it easier to run the stored process from
various clients. This replacement also enables you to run the code from a client
like the SAS Stored Process Web Application and specify different values for
_ODSDEST. For example, you can change the values of _ODSDEST and
generate output as PDF, RTF, or PostScript, without making any SAS code
changes.

For this example, delete the two ODS statements at the beginning of the code,
and replace them with the following line of code:

%stpbegin;

Replace the ODS statement at the end of the code with the following statement:

%stpend;

Check the list of conversion considerations. No further code changes are
necessary for this program to run as a stored process. The stored process now
consists of the following code:

%global regionname;

%stpbegin;

* PROC TABULATE code here;

%stpend;

3 Save the changes and close webtab1.sas.

Step 3: Register the Stored Process in
SAS Management Console
Note: Before you can register a stored process, a server must be defined for the
stored process to run on. Converted SAS/IntrNet programs generally should be
registered on a stored process server. If a stored process server is not already
defined, then you can use the Server Manager in SAS Management Console to
define a server. For more information about how to define a server, see the Help for
the Server Manager.

To register a new stored process, complete the following steps:

1 From the Folder view in SAS Management Console, select the folder in which
you would like to create the new stored process. For this example, create
a /Converted Samples folder.

To create a new folder, navigate to where you want to put the new folder. Select
Actions ð New ð New Folder. The New Folder wizard appears.

2 Select Actions ð New ð Stored Process. The New Stored Process wizard
appears.

196 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

3 In the New Stored Process wizard, complete the following steps:

a Enter the following information on the first page of the wizard:

n Name:Regional Shoe Sales

n Description: Converted from SAS/IntrNet program.

Figure A4.3 New Stored Process Wizard - Name Specification

b Click Next.

c On the next page of the wizard, specify the following information:

n Application server: SASApp

n Server type: Default server

n Source code location and execution: Allow execution on selected
application server only, Store source code on application
server

n Source code repository: C:\MySASFiles\storedprocesses (A source
code repository is a location on the application server that contains stored
process source code. Click Manage if you need to add a new source

Example 197

code repository to the list. For more information about the source code
repository, see the New Stored Process wizard Help.)

n Source file: webtab1.sas

n Output: Stream

Figure A4.4 New Stored Process Wizard - Execution Details

d Click Next.

The next page of the wizard is where you add parameters. Parameters are
optional unless you plan to execute the stored process in other clients that
need the metadata information in order to build a dialog box, or if you want to
take advantage of the dynamic prompt page that is built by the SAS Stored
Process Web Application. Parameters are also useful if you want to restrict
input values or types of input. Do not define any parameters right now.

198 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

Click Next.

The next page of the wizard is where you add data sources and data targets.
Do not define any data sources or targets for this stored process.

e Click Finish to register the new stored process.

Note: After you have registered the stored process, use the Stored Process
Properties dialog box to control access to the stored process. For more
information, see the Help for the Stored Process Properties dialog box.

Step 4: Create a New JSP Page and
Modify the HTML
To preserve the functionality of the original SAS/IntrNet example, copy the HTML file
to a new location before modifying it.

Note: This example shows you how to use the input component from the
Application Dispatcher program as a custom input form for the stored process. You
can use the _PROGRAM variable along with _ACTION=FORM in the URL to
display the custom input form for the stored process. However, copying the HTML
file is optional. You can run stored processes without a custom input form.

1 If you want this web page to be used as the default input form in the SAS Stored
Process Web Application, then copy the webtab1.html file to a physical location
under the SAS Web Application Server directory. The exploded directory might
be something like <SASHOME>\Config\Lev1\Web\WebAppServer
\SASServer1_1\sas_webapps\sas.storedprocess.war\input
\Converted_Samples. (The physical location corresponds to the metadata
location. This location is correct only if the new stored process is registered in
the /Converted Samples folder in the metadata repository. Otherwise, the path
is different.)

Note: The SAS Stored Process Web Application is delivered in an EAR file, and
can be run directly from the EAR file or from the exploded directory. For more
information about how to explode the EAR file, see the SAS Intelligence
Platform: Web Application Administration Guide.

Note: You can also copy the HTML file to a new directory under the IIS Web
Server, or to a new directory under the SAS Web Application Server directory
with the SAS Stored Process Web Application. However, if you decide to do this,
you should be aware that appending _ACTION=FORM to the URL to find the
custom input form does not work.

2 Modify the HTML page to call the stored process instead of the SAS/IntrNet
program.

a Open webtab1.html in an HTML editor.

Example 199

b Change the value of the ACTION attribute in the FORM tag to
http://myserver:8080/SASStoredProcess/do.

c Remove the hidden field for _SERVICE.

d Change the value of the hidden field for _PROGRAM to the metadata
location, and name of the stored process: /Converted Samples/Regional
Shoe Sales.

e You can leave the _DEBUG check box with a value of 131. This is equivalent
to the value LOG,TIME,FIELDS.

f You can change the text that appears on the web page. If you want to use
images, then you need to move them to a location in the current directory or
change the tag to point back to the old directory.

g The body of the file now contains the following HTML:

<H1>Regional Shoe Sales</H1>
<p>Select a region in order to display shoe sales data for that
region by subsidiary and style. This sample program uses ODS and
the TABULATE procedure.</p>

<HR>

<FORM ACTION="http://myserver:8080/SASStoredProcess/do">
<INPUT TYPE="HIDDEN"
 NAME="_PROGRAM" VALUE="/Converted Samples/Regional Shoe Sales">

Select a region: <SELECT NAME="regionname">
<OPTION VALUE="Africa">Africa
<OPTION VALUE="Asia">Asia
<OPTION VALUE="Central America/Caribbean">Central America/Caribbean
<OPTION VALUE="Eastern Europe">Eastern Europe
<OPTION VALUE="Middle East">Middle East
<OPTION VALUE="Pacific">Pacific
<OPTION VALUE="South America">South America
<OPTION VALUE="United States">United States
<OPTION VALUE="Western Europe">Western Europe
</SELECT>

<HR>
<INPUT TYPE="SUBMIT" VALUE="Execute">
<INPUT TYPE="CHECKBOX" NAME="_DEBUG" VALUE="131">Show SAS Log

</FORM>

h Save the file as Regional Shoe Sales.jsp, and close it.

Note: If this JSP file is located somewhere other than in the SAS Stored Process
Web Application directory, then you need to specify the complete URL to the stored
process servlet, as follows, in the ACTION attribute in the FORM tag:
http://myserver:8080/SASStoredProcess/do. Otherwise, this URL can be a
relative link, as follows: /SASStoredProcess/do. If you do place the JSP file under
the same directory as the SAS Stored Process Web Application, then you need to
be careful to preserve the application if you later upgrade or redeploy the SAS
Stored Process Web Application.

200 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

You should also convert any HTML pages that link to your stored process to use the
SASStoredProcess URL syntax. For example, you might use the following URL to
link to the Hello World sample program using the Application Broker:

http://myserver/cgi-bin/broker?
_service=default&_program=sample.webhello.sas

The URL specifies your Application Server, an absolute path to the Application
Broker, and the query string (followed by the question mark character). The query
string contains the name/value pair data that is input to the application. Each name
is separated from the following value by an equal sign (=). Multiple name/value pairs
are separated by an ampersand (&). The web page that executes an Application
Dispatcher program must pass the _SERVICE and _PROGRAM variables. In this
example, the _SERVICE=DEFAULT pair specifies the service that handles this
request, and the _PROGRAM=SAMPLE.WEBHELLO.SAS pair specifies the library,
name, and type of request program to be executed.

For the SAS Stored Process Web Application, the URL in the preceding example
would need to be changed. You might use the following URL if you want to run the
program from the SAS Stored Process Web Application:

http://myserver:8080/SASStoredProcess/do?
_program=/Samples/Stored+Processes/Sample:+Hello+World

The URL specifies your stored process server, an absolute path to the SAS Stored
Process Web Application (instead of the Application Broker), and the query string.
Notice that /cgi-bin/broker? has been replaced with the stored process web
application equivalent: /SASStoredProcess/do?. The _SERVICE name/value pair is
not used with stored processes, and _PROGRAM is the reserved input parameter
that specifies the metadata location and the name of the stored process to be
executed.

There are special rules for the formatting of name/value pairs in a URL. Special
characters (most punctuation characters, including spaces) in a value must be
URL-encoded. Spaces can be encoded as a plus sign (+) or %20. Other characters
are encoded using the %nn convention, wherenn is the hexadecimal representation
of the character in the ASCII character set. In the previous example, the value /
Samples/Stored+Processes/Sample:+Hello+World actually identifies the stored
process named Sample: Hello World. The space in the name is encoded as a
plus sign (+). If your parameter values contain special characters, then they should
be URL-encoded.

Step 5: Execute the Stored Process Using
the New JSP Page
1 You can use _ACTION=FORM in the URL in order to display the custom input

form. For example, enter the following URL in a web browser:

http://myserver:8080/SASStoredProcess/do?
_program=/Converted+Samples/Regional+Shoe+Sales&_action=form

Your web browser is forwarded to the following URL, which displays the modified
custom input form:

http://myserver:8080/SASStoredProcess/input/Converted_Samples/
Regional_Shoe_Sales.jsp?_program=/Converted Samples/Regional Shoe Sales

Example 201

Note: Be sure to start SAS Web Application Server first.

2 Select the default region (Africa) and click Execute.

The JSP page executes the stored process by using the following generated
URL:

http://myserver:8080/SASStoredProcess/do?
_PROGRAM=/Converted Samples/Regional Shoe Sales®ionname=Africa

The results look like the results from the Application Dispatcher program as
shown in the following display:

Figure A4.5 Stored Process Results

202 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

Adding a Parameter to the Stored Process
Definition

Step 1: Modify the Stored Process
Metadata Definition
Parameter definitions are not required if you are converting a SAS/IntrNet program
to a stored process. If macro variables in the program are used to substitute
parameter values in the program, you can define the macro variables as parameters
to the stored process. If you define the value as a parameter, it means that other
clients can use the metadata to create a dialog box that prompts for the parameter,
or you can use the dynamic prompt page that is built by the SAS Stored Process
Web Application. If you do not define the parameter, it means that the program must
use defaults in the code if you want to execute the stored process in other clients. If
you intend to use the stored process in other clients, then you should define
parameters in the metadata.

In webtab1.html and webtab1.sas, the REGIONNAME macro variable is substituted
into the PROC TABULATE code. Because the HTML form uses a drop-down list,
you can count on a valid value always being passed to the program from that web
page. If you want to make sure this stored process runs correctly in other clients (or
if you want to use the dynamic prompt page that was built by the SAS Stored
Process Web Application), then you need to define a parameter that returns a
macro variable named REGIONNAME with a valid list of regions.

To add the REGIONNAME parameter, complete the following steps:

1 In SAS Management Console, open the Stored Process Properties dialog box
for the Regional Shoe Sales stored process.

2 On the Parameters tab, click New Prompt.

3 On the General tab of the New Prompt dialog box, specify the following
information:

n Name: regionname

n Displayed text: Select a region

n Options: Requires a non-blank value

Example 203

Figure A4.6 New Prompt Dialog Box: General Tab

4 In the Prompt Type and Values tab of the New Prompt dialog box, specify the
following information:

n Prompt type: Text

n Method for populating prompt: User selects values from a static
list

n Number of values: Single value

n List of values:
Africa
Asia
Central America/Caribbean
Eastern Europe
Middle East
Pacific
South America
United States
Western Europe

For the List of Values table, click Add to add each value. Click the radio button
for Default next to Africa. For more information about these fields, see the Help
for this dialog box.

204 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

Figure A4.7 New Prompt Dialog Box: Prompt Type and Values Tab

5 Click OK in the New Prompt dialog box, and then click OK in the Stored Process
Properties dialog box.

Step 2: Execute the Stored Process Using
the Dialog Box
To view the parameter that you added to the stored process metadata definition,
execute the stored process using the SAS Stored Process Web Application dialog
box instead of the custom input form. The dialog box uses the parameter that you
defined in the New Stored Process wizard when you registered the stored process

Example 205

metadata. To access the dialog box for this stored process, enter the following URL
in a web browser:

http://myserver:8080/SASStoredProcess/do?
_PROGRAM=/Converted Samples/Regional Shoe Sales&_action=properties

Figure A4.8 SAS Stored Process Web Application: Dialog Box

Select the default region (Africa) and click Execute. You see the same results (the
table of shoe sales for Africa that was shown in “Step 5: Execute the Stored Process
Using the New JSP Page” on page 201) displayed in a separate web browser
window.

Executing Catalog Entries
If you are converting SAS/IntrNet programs that use SOURCE or MACRO catalog
entries, then you need to use a wrapper .sas source file to execute the catalog
entry. As mentioned in the "Conversion Considerations" section, the stored process
server cannot directly execute SOURCE, MACRO, or SCL catalog entries.

Note: SCL catalog entries cannot be executed using this type of wrapper program.

You can use a wrapper program like the following to execute SOURCE catalog
entries:

libname mylib 'sas-data-library'; /* this library

206 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

could be pre-assigned */
filename fileref1 catalog 'mylib.catalog.program.source';
%include fileref1;

The wrapper program for MACRO catalog entries can be something like the
following wrapper:

libname mysas 'SAS-data-library';
/* this library could be pre-assigned */
filename mymacros catalog 'mysas.mycat';
options sasautos=mymacros mautosource;
%macroname;

These two sample programs show only the minimum code that is necessary to
execute catalog entries from a SAS program. This might be enough in some cases,
but you might want to use some other SAS/IntrNet features by including macro
variables such as _PGMLIB, _PGMCAT, _PGM, _PGMTYPE, and _APSLIST.

Executing Catalog Entries 207

208 Appendix 2 / Converting SAS/IntrNet Programs to SAS Stored Processes

Appendix 3
Formatting Prompt Values and
Generating Macro Variables from
Prompts

Entering Prompt Values in the SAS Stored Process Web Application 209

Macro Variables That Are Generated from Prompts . 216
Macro Variable Generation and Assignment . 216
Example: Single Macro Variable Generation . 218
Examples: Multiple Macro Variable Generation . 218
Quick Reference . 220

Entering Prompt Values in the SAS
Stored Process Web Application

The following table explains how to format values for the various prompt types in the
SAS Stored Process Web Application:

Table A5.1 Guidelines for Entering Prompt Values (U.S. English Locale)

Prompt Type Guidelines Examples

Text Enter any character value. Blank
spaces and nonprintable characters
can be used, but the value cannot
consist completely of these characters.
Trailing blanks are stored as part of the
value and are included when the value

n you are here

n eighty-five

n Bob

209

Prompt Type Guidelines Examples

is validated against the minimum and
maximum length requirements.

Numeric Enter a standard numeric value.

n If you are working with an integer
prompt, then do not use values with
decimal places. If you use a value
with zeros after the decimal point
(for example, 1.00) for an integer
prompt, then the zeros and the
decimal point are removed before
the value is stored (for example,
1.00 is stored as 1).

n For prompts that allow floating-point
values, the unformatted prompt
value can contain up to 15
significant digits. Values with more
than 15 significant digits of precision
are truncated. Note that formatted
values can have more than 15
significant digits.

n 1.25

n 6000

n 2222.444

Date For dates of type Day, enter values in
one of the following formats:

n ddmonth-nameyyyy

n mm/dd/yy<yy>

n mm.dd.yy<yy>

n mm-dd-yy<yy>

n month-name/dd/yy<yy>

n month-name.dd.yy<yy>

n month-name-dd-yy<yy>

n month-name dd, yyyy

n day-of-week, month-name dd,
yy<yy>

n yyyy/mm/dd

n yyyy.mm.dd

n yyyy-mm-dd

n yyyy.month-name.dd

n yyyy-month-name-dd

Here is an explanation of the syntax:

day-of-week
specifies either the first three letters of
the day of the week or the full name of
the day of the week (the full name of
the day must be used for values
in .NET). This value is not case
sensitive. (That is, the lowercase and

n 4APR1860

n 14January1918

n 12/14/45

n 02.15.1956

n 1–1–60

n Feb/10/00

n March.1.2004

n DEC-25–08

n SEPTEMBER 20, 2010

n FRI, Jan 3, 20

n Monday, January 16,
40

n 2041/5/13

n 2050.07.25

n 2100–1–1

n 2101.December.31

n 2400–Aug-8

210 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt Type Guidelines Examples

uppercase versions of the same
character are considered to be the
same.)

dd
specifies a one-digit or two-digit
integer that represents the day of the
month.

mm
specifies a one-digit or two-digit
integer that represents the month of
the year.

month-name
specifies either the first three letters of
the month or the full name of the
month. This value is not case
sensitive. (That is, the lowercase and
uppercase versions of the same
character are considered to be the
same.)

yy or yyyy
specifies a two-digit or four-digit
integer that represents the year. To
refer to a year that is more than 80
years in the past or 20 years in the
future, use four digits. Valid values for
a four-digit year range from 1600 to
2400.

Date (cont’d.) For dates of type Week, enter values in
one of the following formats:

n Www yy<yy>

n Weekww yyyy

Here is an explanation of the syntax:

ww
specifies a one-digit or two-digit
integer that represents the week of the
year. Valid values range from 1 to 52.

yy or yyyy
specifies a two-digit or four-digit
integer that represents the year. To
refer to a year that is more than 80
years in the past or 20 years in the
future, use four digits. Valid values for
a four-digit year range from 1600 to
2400.

n W1 08

n W52 1910

n Week 20 2020

n Week 5 2048

For dates of type Month, enter values
in one of the following formats:

n mm/yy<yy>

n mm.yy<yy>

n mm-yy<yy>

n 12/1828

n 06.65

n 7–76

n Jul 08

n JUNE/2010

Entering Prompt Values in the SAS Stored Process Web Application 211

Prompt Type Guidelines Examples

n month-name yy<yy>

n month-name/yy<yy>

n month-name.yy<yy>

n month-name-yy<yy>

Here is an explanation of the syntax:

mm
specifies a one-digit or two-digit
integer that represents the month of
the year.

month-name
specifies either the first three letters of
the month or the full name of the
month. This value is not case
sensitive. (That is, the lowercase and
uppercase versions of the same
character are considered to be the
same.)

yy or yyyy
specifies a two-digit or four-digit
integer that represents the year. To
refer to a year that is more than 80
years in the past or 20 years in the
future, use four digits. Valid values for
a four-digit year range from 1600 to
2400.

n SEP.20

n October-2050

Date (cont’d.) For dates of type Quarter, enter values
in the following format:

n quarter-name quarter yyyy

Here is an explanation of the syntax:

quarter-name
specifies the quarter of the year. Valid
values are 1st, 2nd, 3rd, and 4th.

yyyy
specifies a four-digit integer that
represents the year. Valid values for a
four-digit year range from 1600 to
2400.

n 1st quarter 1900

n 4th quarter 2060

For dates of type Year, enter values in
the following format:

n yy<yy>

Here is an explanation of the syntax:

yy or yyyy
specifies a two-digit or four-digit
integer that represents the year. To
refer to a year that is more than 80
years in the past or 20 years in the
future, use four digits. Valid values for

n 1895

n 86

n 08

n 2035

212 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt Type Guidelines Examples

a four-digit year range from 1600 to
2400.

Time Enter time values in the following
format:

n hh:mm<:ss> <AM | PM>

Here is an explanation of the syntax:

hh
specifies a one-digit or two-digit
integer that represents the hour of the
day. Valid values range from 0 to 24.

mm
specifies a one-digit or two-digit
integer that represents the minute of
the hour. Valid values range from 0 to
59.

ss (optional)
specifies a one-digit or two-digit
integer that represents the second of
the minute. Valid values range from 0
to 59. If this value is not specified,
then the value defaults to 00 seconds.

AM or PM (optional)
specifies either the time period 00:01
– 12:00 noon (AM) or the time period
12:01 – 12:00 midnight (PM). If this
value is not specified and you are
using the 12-hour system for
specifying time, then the value
defaults to AM. Do not specify AM or PM
if you are using the 24-hour system for
specifying time.

n 1:1

n 1:01 AM

n 13:1:1

n 01:01:01 PM

n 22:05

Timestamp Enter timestamp values in one of the
following formats:

n mm/dd/yy<yy> hh:mm AM | PM

n yyyy-mm-ddThh:mm:ss

n ddmonth-nameyy<yy> :hh:mm:ss

n <day-of-week,> month-name dd,
yyyy hh:mm:ss AM | PM

Here is an explanation of the syntax:

day-of-week (optional)
specifies either the first three letters of
the day of the week or the full name of
the day of the week. This value is not
case sensitive. (That is, the lowercase
and uppercase versions of the same
character are considered to be the
same.)

n 7/3/08 12:40 AM

n 2012-11-23T15:30:32

n 14FEB2020:11:0:0

n Dec 25, 2020
12:00:00 AM

n Thursday, November
24, 2050 4:45:45 PM

Entering Prompt Values in the SAS Stored Process Web Application 213

Prompt Type Guidelines Examples

dd
specifies a one-digit or two-digit
integer that represents the day of the
month.

mm
specifies a one-digit or two-digit
integer that represents the month of
the year.

month-name
specifies either the first three letters of
the month or the full name of the
month. This value is not case
sensitive. (That is, the lowercase and
uppercase versions of the same
character are considered to be the
same.)

yy or yyyy
specifies a two-digit or four-digit
integer that represents the year. To
refer to a year that is more than 80
years in the past or 20 years in the
future, use four digits. Valid values for
a four-digit year range from 1600 to
2400.

hh
specifies a one-digit or two-digit
integer that represents the hour of the
day. Valid values range from 0 to 24.

mm
specifies a one-digit or two-digit
integer that represents the minute of
the hour. Valid values range from 0 to
59.

ss
specifies a one-digit or two-digit
integer that represents the second of
the minute. Valid values range from 0
to 59.

Timestamp
(cont’d.)

AM or PM (optional)
specifies either the time period 00:01
– 12:00 noon (AM) or the time period
12:01 – 12:00 midnight (PM). If this
value is not specified and you are
using the 12-hour system for
specifying time, then the value
defaults to AM. Do not specify AM or PM
if you are using the 24-hour system for
specifying time.

Color Enter color values in one of the
following formats:

n CXrrggbb

n 0xrrggbb

Bright red

n CXFF0000

n 0xFF0000

214 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt Type Guidelines Examples

n #rrggbb

Here is an explanation of the syntax:

rr
specifies the red component.

gg
specifies the green component.

bb
specifies the blue component.

Each component should be specified
as a hexadecimal value that ranges
from 00 to FF, where lower values are
darker and higher values are brighter.

n #FF0000

Black

n CX000000

n 0x000000

n #000000

White

n CXFFFFFF

n 0xFFFFFF

n #FFFFFF

Data source Enter the name and location of a data
source in the following format:

n /folder-name-1/<.../folder-name-n/
>data-source-name(type)

Here is an explanation of the syntax:

/folder-name-1/<.../folder-name-n/>
specifies the location of the data
source.

data-source-name
specifies the name of the data source.

type
is the type of data source. The
following values are valid unless
otherwise noted: Table,
InformationMap, and Cube. Use
InformationMap for specifying either
relational or OLAP information maps.

n /Shared Data/Tables/
OrionStar/
Customers(Table)

n /Users/
MarcelDupree/My
Folder/My
Information
Map(InformationMap)

n /MyCustomRepository
/More Data/
Order_Facts(Table)

File or
directory

Enter the name and location of a file or
directory in the following format:

n directory-specification<filename>

Here is an explanation of the syntax:

directory-specification
specifies the location of the file or
directory in the file system of a SAS
server.

filename
specifies the name of the file. This
value is required only if the prompt is
a file prompt. Depending on the
operating environment that the SAS
server runs in, you might need to put a
forward slash (/) or a backslash (\)
between the directory specification
and the name of the file.

n C:\Documents and
Settings\All Users
\Documents
\myfile.txt

Entering Prompt Values in the SAS Stored Process Web Application 215

Prompt Type Guidelines Examples

Data library Enter the name and location of a data
library in the following format:

n /folder-name-1/<.../folder-name-n/
>library-name(Library)

Here is an explanation of the syntax:

/folder-name-1/<.../folder-name-n/>
specifies the location of the library.

library-name
specifies the name of the library.

n /Data/Libraries/
Customer Data
Library(Library)

n /MyCustomRepository
/More Data/
OracleData(Library)

Macro Variables That Are Generated
from Prompts

Macro Variable Generation and Assignment
One or more global macro variables is automatically generated for each prompt
when the prompt is executed at run time. The values that are specified for the
prompts at run time are assigned to the generated macro variables.

One or more macro variables can be generated from both single-value prompts and
multi-value prompts. A prompt can have single or multiple values, depending on
what you select for the Number of values field on the Prompt Type and Values
tab in the New Prompt or Edit Prompt dialog box in SAS Management Console. The
following list describes the macro variables that can be generated. PROMPT-NAME
is used to represent the name of the prompt.

n A base macro variable is generated for every type of prompt except range
prompts. The name of the prompt is used as the name of the base macro
variable.

Note: Macro variable names can be no more than 32 characters long. Ensure
that you consider this restriction when you name the prompt.

n For all multi-value prompts, the following macro variables are generated.
Suffixes such as _COUNT or a numeric value are appended to the prompt name
to create unique names for these macro variables.

PROMPT-NAME_COUNT
The value of this macro variable is the number of values that are specified for
the prompt. If no value is specified for a multi-value prompt, then PROMPT-
NAME_COUNT is set to 0.

216 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

PROMPT-NAME0
The value of this macro variable is the same as the value of PROMPT-
NAME_COUNT. If no value or only one value is specified for a multi-value
prompt, then this macro variable is not generated.

PROMPT-NAMEn
If a multi-value prompt has more than one value specified for it, then each
value is stored in a macro variable with the name PROMPT-NAMEn where n
is the ordinal number of the value in the list of prompt values. The value of
PROMPT-NAME1 is the same as the value of the base macro variable. If
only one value is specified for a multi-value prompt, then no PROMPT-
NAMEn macro variables are generated.

Note: Macro variable names can be no more than 32 characters long. Ensure
that you consider this restriction and the length of the suffix when you name the
prompt. The length of the suffix is included as part of the 32 characters.

n If any of the following special values are specified for a prompt, then the
corresponding base macro variable or PROMPT-NAMEn macro variable is
assigned a value as follows:

Table A5.2 Generated Macro Variables for Special Values

Special Value Macro Variable Value

(all possible values) _ALL_VALUES_

(missing values) for numeric, date,
time, and timestamp prompts

.

(missing values) for character
prompts

(a single space)

n Additional macro variables are generated for certain types of prompts. See the
“Quick Reference” on page 220 for a list of these macro variables. Suffixes such
as _REL, _MIN, and _MAX are appended to the prompt name to create unique
names for these macro variables. The following list describes the macro-
variables that can be generated. SUFFIX is used to represent the various
suffixes.

PROMPT-NAME_SUFFIX
This macro variable is generated for both single-value and multi-value
prompts.

PROMPT-NAME_SUFFIXn
These macro variables are generated when a multi-value prompt has more
than one value specified for it. The n is the ordinal number of the value in the
list of prompt values. The value of PROMPT-NAME_SUFFIX1 is the same as
the value of PROMPT-NAME_SUFFIX. If only one value is specified for a
multi-value prompt, then no PROMPT-NAME_SUFFIXn macro variables are
generated.

Macro Variables That Are Generated from Prompts 217

Note: Macro variable names can be no more than 32 characters long. Ensure
that you consider this restriction and the length of the suffix when you name the
prompt. The length of the suffix is included as part of the 32 characters.

n If no value is specified for a prompt, then an empty base macro variable is
generated. For range prompts, which do not have base macro variables, the
PROMPT-NAME_MIN and PROMPT-NAME_MAX macro variables are empty.

Example: Single Macro Variable Generation
The following example shows the macro variable that is generated for a single-value
text prompt.

Table A5.3 Generated Macro Variables for a Single-Value Text Prompt

Prompt Name Prompt Value
Macro Variable
Name

Macro Variable
Value

MYPROMPT Hello World! MYPROMPT Hello World!

Examples: Multiple Macro Variable Generation
The following example shows the macro variables that are generated for a single-
value time prompt.

Table A5.4 Generated Macro Variables for a Single-Value Time Prompt

Prompt Name Prompt Value
Macro Variable
Name

Macro Variable
Value

MYTIME 09:59:55 AM MYTIME 9:59:55

MYTIME_LABEL 09:59:55 AM

In the preceding example, two macro variables were generated for the single prompt
value. If the prompt value had been a relative time value (such as Yesterday), then
a third macro variable named MYTIME_REL would have been generated.

The following example shows the macro variables that are generated for a multi-
value text prompt.

218 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Table A5.5 Generated Macro Variables for a Multi-value Text Prompt

Prompt Name Prompt Value
Macro Variable
Name

Macro Variable
Value

RESPONSE Yes

No

Undecided

(missing values)

RESPONSE Yes

RESPONSE_COU
NT

4

RESPONSE0 4

RESPONSE1 Yes

RESPONSE2 No

RESPONSE3 Undecided

RESPONSE4

In the preceding example, seven macro variables were generated for the four
prompt values. The macro variables RESPONSE and RESPONSE1 both contain
the first prompt value. The macro variables RESPONSE_COUNT and RESPONSE0
both contain the number of values that were specified for the prompt. The macro
variables RESPONSE2 and RESPONSE3 contain the second and third prompt
values, respectively. RESPONSE4 contains a single blank space, which represents
the special value (missing values).

The following example shows the macro variables that are generated for a multi-
value date prompt.

Table A5.6 Generated Macro Variables for a Multi-value Date Prompt

Prompt Name Prompt Value
Macro Variable
Name

Macro Variable
Value

MYDATE Today

Tomorrow

September 04,
2008

MYDATE_COUNT 3

MYDATE0 3

MYDATE 02Sep2008

MYDATE1 02Sep2008

MYDATE2 03Sep2008

MYDATE3 04Sep2008

MYDATE_LABEL Today (September
02, 2010)

Macro Variables That Are Generated from Prompts 219

Prompt Name Prompt Value
Macro Variable
Name

Macro Variable
Value

MYDATE_LABEL1 Today (September
02, 2010)

MYDATE_LABEL2 Tomorrow
(September 03,
2010)

MYDATE_LABEL3 September 04,
2008

MYDATE_REL D0D

MYDATE_REL1 D0D

MYDATE_REL2 D1D

In the preceding example, 13 macro variables were generated for the three prompt
values.

n The macro variables MYDATE_COUNT and MYDATE0 contain the number of
values that were specified for the prompt.

n The macro variables MYDATE and MYDATE1 contain the specific date that the
first relative date (Today) resolves to. The macro variable MYDATE2 contains the
specific date that the second relative date (Tomorrow) resolves to. The macro
variable MYDATE3 contains the third prompt value.

n The macro variables MYDATE_LABEL, MYDATE_LABEL1, and
MYDATE_LABEL2 contain the relative dates (and their respective resolved
dates) that were specified for the prompt. MYDATE_LABEL3 contains the long
form of the specific date that was specified for the prompt.

n The macro variables MYDATE_REL and MYDATE_REL1 contain the internal
representation of Today. The macro variable MYDATE_REL2 contains the
internal representation of Tomorrow.

Quick Reference
The following table lists, by prompt type, the macro variables that are generated and
how their values are determined. Examples of the generated macro variables are
also provided.

Note: If your application or software feature enables you to create custom types of
prompts, then the application or software feature determines which macro variables
are generated for those prompts. For information about macro variables for custom
types of prompts, see the documentation for your application or software feature.

220 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Table A5.7 Generated Macro Variables by Prompt Type for Prompt MYPROMPT

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

Text The PROMPT-NAME macro
variable contains the value of
the prompt. No additional
macro variables are generated
for single-value prompts. For
more information about the
macro variables that are
generated for multi-value
prompts, see “Macro Variable
Generation and Assignment”
on page 216.

Hello World! MYPROMPT Hello World!

Numeric The PROMPT-NAME macro
variable contains the value of
the prompt. No additional
macro variables are generated
for single-value prompts. For
more information about the
macro variables that are
generated for multi-value
prompts, see “Macro Variable
Generation and Assignment”
on page 216.

12 MYPROMPT 12

Text
range,
Numeric
range

A base macro variable is not
generated for range prompts.

The PROMPT-NAME_MIN
macro variable contains the
lower boundary of the
specified prompt range.

From: 23

To: 45

MYPROMPT_MIN 23

The PROMPT-NAME_MAX
macro variable contains the
upper boundary of the
specified prompt range.

From: 23

To: 45

MYPROMPT_MAX 45

Date
(Day)

The PROMPT-NAME macro
variable contains the value of
the prompt in the format
ddmmmyyyy.1

Here is an explanation of the
syntax:

dd
specifies a two-digit integer
that represents the day of the
month.

April 04,
2008

MYPROMPT 04Apr2008

Macro Variables That Are Generated from Prompts 221

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

mmm
specifies the first three letters
of the month.

yyyy
specifies a four-digit integer
that represents the year.

For more information about
the macro variables that are
generated for multi-value
prompts, see “Macro Variable
Generation and Assignment”
on page 216.

The PROMPT-NAME_LABEL
macro variable contains one of
the following values:

n for relative date values, the
relative date with the
resolved date in
parentheses (for example,
Tomorrow (April 04,
2008)).

n for specific date values, the
date in the format
month-name dd, yyyy.

Here is an explanation of
the syntax:

month-name
specifies the full name of
the month.

dd
specifies a two-digit
integer that represents the
day of the month.

yyyy
specifies a four-digit
integer that represents the
year.

For more information about
the macro variables that are
generated for multi-value
prompts, see “Macro Variable
Generation and Assignment”
on page 216.

April 04,
2008

MYPROMPT_LABEL April 04,
2008

Date
(Day)
(cont’d.)

The PROMPT-NAME_REL
macro variable contains the
internal representation of the
relative date that is specified
for the prompt. This macro

Current day
of last year

MYPROMPT_REL D0D-1Y

222 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

variable is generated only
when the prompt value is a
relative date.

For more information about
the macro variables that are
generated for multi-value
prompts, see “Macro Variable
Generation and Assignment”
on page 216.

Date
(Week,
Month,
Quarter,
Year)

The PROMPT-NAME macro
variable contains the first day
of the week, month, quarter, or
year2

that is specified for the prompt.
The format of the macro
variable value is
ddmmmyyyy.1

Here is an explanation of the
syntax:

dd
specifies a two-digit integer
that represents the day of the
month.

mmm
specifies the first three letters
of the month.

yyyy
specifies a four-digit integer
that represents the year.

For more information about
the macro variables that are
generated for multi-value
prompts, see “Macro Variable
Generation and Assignment”
on page 216.

Week 36 2008 MYPROMPT 01Sep2008

The PROMPT-NAME_END
macro variable contains the
last day of the week, month,
quarter, or year2

that is specified for the prompt.
See the above base macro
variable entry for the format
that is used.1

For more information about
the macro variables that are
generated for multi-value
prompts, see “Macro Variable

Week 36 2008 MYPROMPT_END 07Sep2008

Macro Variables That Are Generated from Prompts 223

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

Generation and Assignment”
on page 216.

Date
(Week,
Month,
Quarter,
Year)
(cont’d.)

The PROMPT-NAME_LABEL
macro variable contains one of
the following week, month,
quarter, or year2

values:

n for relative date values, the
relative date with the
resolved date in
parentheses (for example,
Current week (Week 36
2008)).

n for specific date values, the
date in the following
formats:

o Week ww, yyyy

o month-name yyyy

o quarter-name quarter
yyyy

o yyyy

Here is an explanation of
the syntax:

ww
specifies a two-digit
integer that represents the
week of the year.

month-name
specifies the full name of
the month.

quarter-name
specifies the quarter of
the year (1st, 2nd, 3rd, or
4th).

yyyy
specifies a four-digit
integer that represents the
year.

For more information about
the macro variables that are
generated for multi-value
prompts, see “Macro Variable
Generation and Assignment”
on page 216.

Week 36 2008 MYPROMPT_LABEL Week 36 2008

The PROMPT-NAME_REL
macro variable contains the

Current week
of last year

MYPROMPT_REL W0W-1Y

224 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

internal representation of the
relative date that is specified
for the prompt. This macro
variable is generated only
when the prompt value is a
relative date.

For more information about
the macro variables that are
generated for multi-value
prompts, see “Macro Variable
Generation and Assignment”
on page 216.

Date
range
(Day)

A base macro variable is not
generated for range prompts.

The PROMPT-NAME_MIN
macro variable contains the
lower boundary of the
specified prompt range. See
the base macro variable entry
for date prompts for the format
that is used.1

From: August
31, 2008

To: September
06, 2008

MYPROMPT_MIN 31Aug2008

The PROMPT-NAME_MAX
macro variable contains the
upper boundary of the
specified prompt range. See
the base macro variable entry
for date prompts for the format
that is used.1

From: August
31, 2008

To: September
06, 2008

MYPROMPT_MAX 06Sep2008

The PROMPT-
NAME_MIN_LABEL macro
variable contains the lower
boundary of the specified
prompt range in the format
that is specified for the
PROMPT-NAME_LABEL
macro variable entry for date
(day) prompts.

From: August
31, 2008

To: September
06, 2008

MYPROMPT_MIN_LAB
EL

August 31,
2008

The PROMPT-
NAME_MAX_LABEL macro
variable contains the upper
boundary of the specified
prompt range in the format
that is specified for the
PROMPT-NAME_LABEL
macro variable entry for date
(day) prompts.

From: August
31, 2008

To: September
06, 2008

MYPROMPT_MAX_LA
BEL

September
06, 2008

Macro Variables That Are Generated from Prompts 225

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

The PROMPT-
NAME_MIN_REL macro
variable contains the internal
representation of the relative
date that is specified for the
lower boundary. This macro
variable is generated only
when the prompt value is a
relative date.

From: Today

To: Current
day of next
month

MYPROMPT_MIN_RE
L

D0D

The PROMPT-
NAME_MAX_REL macro
variable contains the internal
representation of the relative
date that is specified for the
upper boundary. This macro
variable is generated only
when the prompt value is a
relative date.

From: Today

To: Current
day of next
month

MYPROMPT_MAX_RE
L

DOD1M

Date
range
(Week,
Month,
Quarter,
Year)

A base macro variable is not
generated for range prompts.

The PROMPT-NAME_MIN
macro variable contains the
first day of the lower boundary
of the specified prompt range.
See the base macro variable
entry for date prompts for the
format that is used.1

From:
September
2008

To: June 2009

MYPROMPT_MIN 01Sep2008

The PROMPT-NAME_MAX
macro variable contains the
first day of the upper boundary
of the specified prompt range.
See the base macro variable
entry for date prompts for the
format that is used.1

From:
September
2008

To: June 2009

MYPROMPT_MAX 01Jun2009

The PROMPT-
NAME_MIN_LABEL macro
variable contains the lower
boundary of the specified
prompt range in the formats
that are specified for the
PROMPT-NAME_LABEL
macro variable entry for date
(week, month, quarter, year)
prompts.

From:
September
2008

To: June 2009

MYPROMPT_MIN_LAB
EL

September
2008

226 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

The PROMPT-
NAME_MAX_LABEL macro
variable contains the upper
boundary of the specified
prompt range in the formats
that are specified for the
PROMPT-NAME_LABEL
macro variable entry for date
(week, month, quarter, year)
prompts.

From:
September
2008

To: June 2009

MYPROMPT_MAX_LA
BEL

June 2009

The PROMPT-
NAME_MIN_END macro
variable contains the last day
of the lower boundary of the
specified prompt range . See
the base macro variable entry
for date prompts for the format
that is used.1

From:
September
2008

To: June 2009

MYPROMPT_MIN_EN
D

30Sep2008

The PROMPT-
NAME_MAX_END macro
variable contains the last day
of the upper boundary of the
specified prompt range. See
the base macro variable entry
for date prompts for the format
that is used.1

From:
September
2008

To: June 2009

MYPROMPT_MAX_EN
D

30Jun2009

The PROMPT-
NAME_MIN_REL macro
variable contains the internal
representation of the relative
date that is specified for the
lower boundary. This macro
variable is generated only
when the prompt value is a
relative date.

From:
Current week

To: Current
week of next
year

MYPROMPT_MIN_RE
L

W0W

Date
range
(Week,
Month,
Quarter,
Year)
(cont’d.)

The PROMPT-
NAME_MAX_REL macro
variable contains the internal
representation of the relative
date that is specified for the
upper boundary. This macro
variable is generated only
when the prompt value is a
relative date.

From:
Current week

To: Current
week of next
year

MYPROMPT_MAX_RE
L

W0W1Y

Time The PROMPT-NAME macro
variable contains the value of

02:05:28 PM MYPROMPT 14:05:28

Macro Variables That Are Generated from Prompts 227

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

the prompt in the format
hh:mm:ss.1

Here is an explanation of the
syntax:

hh
specifies a one-digit or two-
digit integer that represents
the hour of a 24-hour day.

mm
specifies a two-digit integer
that represents the minute of
the hour.

ss
specifies a two-digit integer
that represents the second of
the minute.

The PROMPT-NAME_LABEL
macro variable contains one of
the following values:

n for relative time values, the
relative time with the
resolved time in
parentheses (for example,
Current time (02:05)28
PM)).

n for specific time values, the
time in the format
hh:mm:ss AM | PM.

Here is an explanation of
the syntax:

hh
specifies a two-digit
integer that represents the
hour of a 12-hour day.

mm
specifies a two-digit
integer that represents the
minute of the hour.

ss
specifies a two-digit
integer that represents the
second of the minute.

AM or PM
specifies either the time
period 00:01–12:00 noon
(AM) or the time period
12:01–12:00 midnight
(PM).

02:05:28 PM MYPROMPT_LABEL 02:05:28 PM

228 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

Time
(cont’d.)

The PROMPT-NAME_REL
macro variable contains the
internal representation of the
relative time that is specified
for the prompt. This macro
variable is generated only
when the prompt value is a
relative time (such as Next
minute).

Next minute MYPROMPT_REL m1m

Timestam
p

The PROMPT-NAME macro
variable contains the value of
the prompt in the format
ddmmmyyyy hh:mm:ss.1

Here is an explanation of the
syntax:

dd
specifies a two-digit integer
that represents the day of the
month.

mmm
specifies the first three letters
of the month.

yyyy
specifies a four-digit integer
that represents the year.

hh
specifies a one-digit or two-
digit integer that represents
the hour of a 24-hour day.

mm
specifies a two-digit integer
that represents the minute of
the hour.

ss
specifies a two-digit integer
that represents the second of
the minute.

September
02, 2008
02:07:03 PM

MYPROMPT 02Sep2008
14:07:03

The PROMPT-NAME_LABEL
macro variable contains the
value of the prompt in the
format month-name dd, yyyy
hh:mm:ss AM | PM.

Here is an explanation of the
syntax:

month-name
specifies the full name of the
month.

September
02, 2008
02:07:03 PM

MYPROMPT_LABEL September
02, 2008
02:07:03 PM

Macro Variables That Are Generated from Prompts 229

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

dd
specifies a two-digit integer
that represents the day of the
month.

yyyy
specifies a four-digit integer
that represents the year.

Timestam
p (cont’d.)

hh
specifies a two-digit integer
that represents the hour of a
12-hour day.

mm
specifies a two-digit integer
that represents the minute of
the hour.

ss
specifies a two-digit integer
that represents the second of
the minute.

AM or PM
specifies either the time
period 00:01–12:00 noon
(AM) or the time period
12:01–12:00 midnight (PM).

The PROMPT-NAME_REL
macro variable contains the
internal representation of the
relative timestamp that is
specified for the prompt. This
macro variable is generated
only when the prompt value is
a relative timestamp (such as
Current date and time).

Current date
and time

MYPROMPT_REL T0m

Time
range,
Timestam
p range

A base macro variable is not
generated for range prompts.

The PROMPT-NAME_MIN
macro variable contains the
lower boundary of the
specified prompt range. See
the base macro variable
entries for time and timestamp
prompts for the formats that
are used.1

From:
01:13:04 AM

To: 02:13:14
PM

MYPROMPT_MIN 1:13:04

The PROMPT-NAME_MAX
macro variable contains the
upper boundary of the
specified prompt range. See

From:
01:13:04 AM

To: 02:13:14
PM

MYPROMPT_MAX 14:13:14

230 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

the base macro variable
entries for time and timestamp
prompts for the formats that
are used.1

The PROMPT-
NAME_MIN_LABEL macro
variable contains the lower
boundary of the specified
prompt range in the formats
that are specified for the
PROMPT-NAME_LABEL
macro variables for time and
timestamp prompts.

From:
October 29,
2008
10:12:12 AM

To: February
14, 2009
12:25:36 PM

MYPROMPT_MIN_LAB
EL

Oct 29, 2008
10:12:12 AM

The PROMPT-
NAME_MAX_LABEL macro
variable contains the lower
boundary of the specified
prompt range in the formats
that are specified for the
PROMPT-NAME_LABEL
macro variables for time and
timestamp prompts.

From:
October 29,
2008
10:12:12 AM

To: February
14, 2009
12:25:36 PM

MYPROMPT_MAX_LA
BEL

Feb 14, 2009
12:25:36 PM

The PROMPT-
NAME_MIN_REL macro
variable contains the internal
representation of the relative
time or timestamp that is
specified for the lower
boundary. This macro variable
is generated only when the
lower boundary is a relative
time or timestamp (such as
Beginning of next hour).

From:
Beginning of
next hour

To: End of
next hour

MYPROMPT_MIN_RE
L

t1HBH (for
time)

T1HBH (for
timestamp)

Time
range,
Timestam
p range
(cont’d.)

The PROMPT-
NAME_MAX_REL macro
variable contains the internal
representation of the relative
time or timestamp that is
specified for the upper
boundary. This macro variable
is generated only when the
upper boundary is a relative
time or timestamp (such as
End of next hour).

From:
Beginning of
next hour

To: End of
next hour

MYPROMPT_MAX_RE
L

t1HEH (for
time)

T1HEH (for
timestamp)

Color The PROMPT-NAME macro
variable contains the value of

CXFF0000
(bright red)

MYPROMPT cxff0000

Macro Variables That Are Generated from Prompts 231

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

the prompt in the format
cxrrggbb.

Here is an explanation of the
syntax:

rr
specifies the red component.

gg
specifies the green
component.

bb
specifies the blue
component.

Data
source

The PROMPT-NAME macro
variable contains the value of
the prompt in the format /
folder-name-1/<.../folder-
name-n/>data-source-
name(type).

Here is an explanation of the
syntax:

/folder-name-1/<.../folder-
name-n/>

specifies the location of the
data source.

data-source-name
specifies the name of the
data source.

type
specifies the type of data
source (Table,
InformationMap, or Cube).

/Shared
Data/Tables/
MYDATA(Table
)

MYPROMPT /Shared
Data/Tables/
MYDATA(Table
)

PROMPT-NAME_TYPE
contains the type of the data
source, represented by the
following numbers:

n 1 represents a table

n 2 represents a cube

n 4 represents a relational
information map

n 8 represents an OLAP
information map

/Shared
Data/Tables/
MYDATA(Table
)

MYPROMPT_TYPE 1

File or
directory

The PROMPT-NAME macro
variable contains the value of
the prompt in the format
directory-specification<filename>

C:\Documents
and Settings
\All Users

MYPROMPT C:\Documents
and Settings
\All Users

232 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro
Variable
Value

Here is an explanation of the
syntax:

directory-specification
specifies the location of the
file or directory in the file
system of the SAS
Workspace Server that was
specified for the prompt.

filename
specifies the name of the file.
This value is available only if
the prompt is a file prompt.

\Documents
\myfile.txt

\Documents
\myfile.txt

The PROMPT-
NAME_SERVER macro
variable contains the name of
the SAS server that was
specified for the prompt.

C:\Documents
and Settings
\All Users
\Documents
\myfile.txt

MYPROMPT_SERVER SASApp -
Logical
Workspace
Server

Data
library

The PROMPT-NAME macro
variable contains the libref of
the library that is specified for
the prompt.

/Shared
Data/
Libraries/
SASHELP(Libr
ary)

MYPROMPT SASHELP

The PROMPT-NAME_PATH
macro variable contains the
name and location of the
library. The format of the
macro variable value is /folder-
name-1/<.../folder-name-n/
>library-name(Library).

/Shared
Data/
Libraries/
SASHELP(Libr
ary)

MYPROMPT_PATH /Shared
Data/
Libraries/
SASHELP(Libr
ary)

1 Relative date, relative time, and relative timestamp values are resolved to specific date, time, and timestamp values,
respectively, for this macro variable.

2 All dates are based on the Gregorian calendar. Each year begins with the month of January, and each week begins on
Monday and ends on Sunday, regardless of locale.

Macro Variables That Are Generated from Prompts 233

234 Appendix 3 / Formatting Prompt Values and Generating Macro Variables from Prompts

	Contents
	What’s New in SAS 9.4 Stored Processes
	Overview
	STP Procedure Enhancements
	SAS Stored Process Web Application Enhancements
	General Enhancements

	Overview of SAS Stored Processes
	What Are SAS Stored Processes?
	Why Are SAS Stored Processes Important?
	Which Clients Can Use SAS Stored Processes?
	What Are SAS IOM Direct Interface Stored Processes?

	Writing a SAS Stored Process
	Overview of Writing a Stored Process
	Using Input Parameters
	Overview of Input Parameters
	Standard Header for Parameters
	Defining Input Parameters
	Unsafe Character Quoting
	Input Parameters with Multiple Values
	Hiding Passwords and Other Sensitive Data

	Getting Data and Files into and Out of Stored Processes
	Input Files
	Input Data
	Output Files
	Output Data

	Setting Result Capabilities
	Using the %STPBEGIN and %STPEND Macros
	Overview of %STPBEGIN and %STPEND
	ODS Options
	Overriding Input Parameters
	Results
	Errors
	Advanced Package Publishing

	Using Output Parameters
	Using Reserved Macro Variables
	Using Sessions
	Overview of Sessions
	Creating a Session
	Using the Session
	Deleting the Session
	Limitations

	Stored Process Server Functions
	Using Stored Process Server Functions
	Dictionary
	STPSRVGETC Function
	STPSRVGETN Function
	STPSRVSET Function
	STPSRV_HEADER Function
	STPSRV_SESSION Function
	STPSRV_UNQUOTE2 Function

	Managing Stored Process Metadata
	Choosing or Defining a Server
	Types of Servers That Host Stored Processes
	SAS Stored Process Server
	SAS Workspace Server

	Using Source Code Repositories
	Registering the Stored Process Metadata
	Developing Stored Processes with Package Results
	Overview
	Create Permanent Package Results
	Creating Transient Package Results

	Using Prompts
	Making Stored Processes Compatible with 9.2 and Upgrading Stored
Processes

	Debugging Stored Processes
	Examining the SAS Log
	Using SAS Options

	Composing Stored Process Reports
	Overview of Stored Process Reports
	Creating and Managing Stored Process Reports

	Building a Web Application with SAS Stored Processes
	Overview
	Overview of Stored Process Web Applications
	How the SAS Stored Process Web Application Works
	SAS Stored Process Web Application Samples

	Configuring the SAS Stored Process Web Application
	Configuration Files
	Custom Responses
	Initialization Parameters
	Web Application Properties

	Specifying Web Application Input
	Overview of Web Application Input
	Specifying Input Parameters in a URL
	Specifying Name/Value Pairs in an HTML Form
	Specifying Custom Input Forms
	Specifying Prompt Pages

	Uploading Files
	Overview of Uploading Files
	Reserved Macro Variables
	Examples of How to Upload Files
	Example 1: Uploading a Single File
	Example 2: Uploading Multiple Files

	Examples of How to Use Uploaded Files
	Example 3: Uploading a CSV File to a SAS Table
	Example 4: Uploading an Excel XML Workbook to Multiple SAS
Tables
	Example 5: Uploading a SAS Table or View
	Example 6: Uploading a SAS Catalog
	Example 7: Uploading a SAS Table, View, or Catalog and Saving
a Permanent Copy
	Example 8: Uploading an Excel Workbook to a SAS Table

	Authentication in the SAS Stored Process Web Application
	Logon Manager and Basic Authentication
	Anonymous Access
	Other Authentication Options

	Using the SAS Stored Process Web Application Pages
	Welcome Page
	Tree View
	Summary Pages
	Stored Process Summary Page
	Stored Process Report Summary Page

	Custom Input Form
	Prompt Page
	Execution Options
	Search Page
	XML Output

	Using HTTP Headers
	Overview of HTTP Headers in Stored Processes
	Commonly Used Headers
	Content-type
	Expires
	Location
	Pragma
	Set-Cookie
	Status-Code

	Embedding Graphics
	Embedding Graphics in Web Pages
	Generating Direct Graphic Output

	Chaining Stored Processes
	Why Chain Stored Processes?
	Passing Data through Form Fields or URL Parameters
	Passing Data through the DATA Step
	Passing Data through Cookies
	Passing Data through Sessions

	Using Sessions in a Sample Web Application
	Overview of the Sample Web Application
	Sample Data
	Main Aisle Stored Process
	Aisles Stored Process
	Add Item Stored Process
	Shopping Cart Stored Process
	Logout Stored Process

	Error Handling
	Debugging in the SAS Stored Process Web Application
	Testing the SAS Stored Process Web Application
	List of Valid Debugging Keywords
	Setting the Default Value of _DEBUG
	Enabling Logging
	Character Encoding

	STP Procedure
	Overview: STP Procedure
	What Does the STP Procedure Do?

	Concepts: STP Procedure
	Requirements for Specifying User Formats with PROC STP
	Automatic Macro Variables Generated by PROC STP

	Syntax: STP Procedure
	PROC STP Statement
	INPUTDATA Statement
	INPUTFILE Statement
	INPUTPARAM Statement
	LIST Statement
	LOG Statement
	OUTPUTDATA Statement
	OUTPUTFILE Statement
	OUTPUTPARAM Statement

	Example: Generating an ODS Document File STP Procedure
	Example 1: Generating an ODS Document File
	Details

	Stored Process Software Requirements
	General Requirements
	Client-Specific Requirements
	Components

	Converting SAS/IntrNet Programs to SAS Stored Processes
	Overview
	Compatibility Features
	Conversion Considerations
	Overview of Conversion Considerations
	HTTP Headers
	Macro Variables
	Code Differences

	Overview of Conversion Steps
	Example
	Sample Environment
	About the Application Dispatcher Program
	The Program Component
	The Input Component

	Converting the Application Dispatcher Program to a Stored Process
	Step 1: Copy the Source Program
	Step 2: Modify the Program as Needed
	Step 3: Register the Stored Process in SAS Management Console
	Step 4: Create a New JSP Page and Modify the HTML
	Step 5: Execute the Stored Process Using the New JSP Page

	Adding a Parameter to the Stored Process Definition
	Step 1: Modify the Stored Process Metadata Definition
	Step 2: Execute the Stored Process Using the Dialog Box

	Executing Catalog Entries

	Formatting Prompt Values and Generating Macro Variables from
Prompts
	Entering Prompt Values in the SAS Stored Process Web Application
	Macro Variables That Are Generated from Prompts
	Macro Variable Generation and Assignment
	Example: Single Macro Variable Generation
	Examples: Multiple Macro Variable Generation
	Quick Reference

